
THE 150Sm(t,3He)150Pm∗ AND 150Nd(3He,t)150Pm∗ REACTIONS AND
APPLICATIONS FOR 2ν AND 0ν DOUBLE BETA DECAY

By

Carol Jeanne Guess

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Physics and Astronomy

2010



ABSTRACT

THE 150Sm(t,3He)150Pm∗ AND 150Nd(3He,t)150Pm∗ REACTIONS
AND APPLICATIONS FOR 2ν AND 0ν DOUBLE BETA DECAY

By

Carol Jeanne Guess

In models of 2νββ and 0νββ decay, the transition is described as proceeding through

“virtual” states of the intermediate nucleus. Knowledge of the location and popula-

tion strength of these levels is crucial for constraining the nuclear matrix elements of

the transition. Charge-exchange (CE) experiments at intermediate energies can be

used to extract the Gamow-Teller strength for both legs of this transition, as well

as additional information on dipole and quadrupole excitations. The ββ decay of

150Nd to 150Sm was probed in two experiments: 150Nd(3He,t)150Pm∗ at RCNP,

Osaka, Japan, and 150Sm(t,3He)150Pm∗ at NSCL/MSU, East Lansing, Michigan,

USA. Gamow-Teller strength distributions and dipole and quadrupole cross section

distributions have been extracted using multipole decomposition techniques, includ-

ing a strong GT state in 150Pm at 0.11 MeV. Applying the extracted Gamow-Teller

strength from both experiments in this region, the single-state dominance hypothe-

sis predicts a 2νββ decay half life of 10.0 ± 3.7 ×1018 years. This is a reasonable

result, but the presence of other low-lying Gamow-Teller strength requires further

investigation using QRPA or other theoretical techniques. The extracted strength

distributions should constrain the nuclear matrix elements for both 2νββ and 0νββ

decay. In addition, an excess of Gamow-Teller strength in the 150Sm(t,3He) ex-

periment is attributed to the population of the IVSGMR. Data are compared with

deformed QRPA calculations from V. Rodin.
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Chapter 1

Introduction

1.1 Motivation

Double beta decay is currently the focus of a great deal of interest from within the

physics community. 2νββ decay occurs when two neutrinos and two electrons are

simultaneously emitted from a nucleus. This process occurs only when other de-

cay methods are forbidden, and the half-lives associated with it are extremely long

(greater than 1017 years). Much of the interest in ββ decay is centered around the

second possible mode, which is 0νββ decay. The emission of two electrons without

two neutrinos would violate the Standard Model, breaking the conservation of lepton

number, and would prove that neutrinos are Majorana rather than Dirac in nature.

A Majorana neutrino is its own antiparticle. Half life values for the 0ν mode of decay

are several orders of magnitude higher than the 2ν mode and 0ν events could easily

be overshadowed by 2ν events, so successful detection of this 0ν mode would be a

major experimental feat. If the measurement is exact enough, it should be possible

to extract the Majorana neutrino mass from the half life.

ββ emitters tend to be heavy nuclei, which makes them hard to model. Theorists

working on this problem must model the location and strength of an enormous number
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of states, and little to no data exists to constrain these models for several nuclei. The

decay of 150Nd to 150Sm (through 150Pm) is one of these cases. A quantity called

a nuclear matrix element contains the physics of two simultaneous beta decays, from

150Nd to 150Pm and then to 150Sm, and this quantity must be known with an error

less than 20% to design the experiments that measure the decay half life and then to

successfully extract the neutrino mass from a half life measurement [1]. Knowing the

location of the levels in the intermediate nucleus, as well as how strongly they may

be populated, can place constraints on the models used to describe ββ decay.

Charge-exchange experiments are an excellent tool for this, since they allow us to

measure the location and strength of Gamow-Teller, Fermi, dipole, and quadrupole

transitions along the same paths taken by beta decay. A charge-exchange reaction

is characterized by a change in isospin (∆T) of 1. When performed at intermediate

energies (energies between 100 and 500 MeV/u), the reaction can be modeled as a

single-step process and Gamow-Teller transitions are preferentially excited.

This thesis describes two charge-exchange experiments designed to constrain the

nuclear matrix elements for the ββ decay of 150Nd to 150Sm. Both populate excited

states in 150Pm. The first experiment, 150Nd(3He,t), took place at RCNP (Osaka,

Japan) with a primary 3He beam. The second experiment was 150Sm(t,3He) and

took place at the NSCL (East Lansing, Michigan, USA) with a secondary triton

beam. Gamow-Teller strengths were extracted from both experiments, along with

information on dipole and quadrupole strengths and the population of several giant

resonances. The results of these two experiments will be immediately useful for ββ

decay theorists and for several experiments that are planned to directly search for

0νββ decay signals [2, 3, 4] from 150Nd.

2



1.2 Organization

This work is divided into chapters by topic. Double beta decay is introduced in

Chapter 2, followed by an introduction to charge-exchange reaction theory in Chapter

3. Chapters 4 and 5 discuss the two experiments and make up the bulk of this work.

Chapter 6 briefly ties the two experiments together, and Chapter 7 summarizes the

findings of both experiments and provides an outlook for similar experiments and

future charge-exchange techniques.
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Chapter 2

Double Beta Decay

2.1 2ν and 0ν Double Beta Decay

2.1.1 Introduction

Fermi introduced his theory of beta (β) decay in 1934 [5, 6]. One year later, half lives

for two-neutrino double-beta decay (2νββ) were first calculated by M. Goeppert-

Mayer [7]. She correctly predicted half lives to be on the order of 1017 years or more.

Four years later, M. Furry built upon this work by also considering zero-neutrino

double beta decay (0νββ) [8], which was possible only using Majorana symmetry

concepts, a departure from Fermi’s Dirac model. While double electron capture [9]

has also been considered, much of the subsequent experimental and theoretical focus

has been on 2νββ and 0νββ decays. Figure 2.1 shows a schematic of both types of

decay. 2νββ decay is modeled as two simultaneous β decays, making it a second-

order weak interaction within the standard model. 2νββ decay:

N(A,Z) → N(A,Z + 2) + 2e− + 2ν̄e (2β−2ν) (2.1)

N(A,Z) → N(A,Z − 2) + 2e+ + 2νe (2β+
2ν) (2.2)

4



Figure 2.1: The two methods of double beta decay, 2-neutrino and 0-neutrino.

is permitted in the standard model, while 0νββ decay

N(A,Z) → N(A,Z + 2) + 2e− (2β−0ν) (2.3)

N(A,Z) → N(A,Z − 2) + 2e+ (2β+
0ν) (2.4)

would require physics beyond the standard model. ββ half lives are between 1017

to 1026 years, and ββ decay is only observed in situations where single-β decay and

other decay modes are forbidden. This can have two causes: extremely high angu-

lar momentum transfer between mother and daughter (e.g. 48Ca), or parent nuclei

where decay to the β daughter has a positive Q value and decay to the ββ daughter

a negative Q value. All ββ mother and daughter nuclei have ground state Jπ of 0+,

and decay from ground state to ground state is more common than that to excited

states, because the phase space is reduced in decay to excited states [10, 11]. Cur-

rently, decay to excited states has only been measured in 100Mo and 150Nd (see [12]

and references within). Some exotic models predict other causes and variants of ββ
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decay, such as the simultaneous emission of a Majoran χ particle, which is a hypo-

thetical Goldstone boson associated with the breaking of lepton number symmetry

[13]. However, the experimental spectrum of summed electron energy would have a

shape that is predicted to differ from both 0νββ and 2νββ decays [14] (Figure 2.3

shows this spectrum for 0 and 2νββ decay only). 2νββ and 0νββ decays are the most

frequently considered and studied modes for ββ decay.

2.1.2 Implications

Signatures of neutrino oscillation were first seen in atmospheric neutrinos during the

Super-Kamiokande experiment [15] and were confirmed by the SNO experiment [16].

The scientific community then turned to questions of the absolute mass scale, how

the flavors change, the nature of the mass hierarchy, and whether neutrinos are their

own antiparticle. Neutrino flavor eigenstates and mass eigenstates are linked through

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary mixing matrix:
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(2.5)

where e, µ, and τ are flavor eigenstates and 1, 2, and 3 are mass eigenstates. The Unα

matrix elements contain the neutrino mixing angles and three charge-parity (CP) vi-

olating phases (one Dirac phase and two Majorana phases, none of which have been

determined yet). Neither the absolute scale nor the hierarchy of mass eigenstates is

well known. Oscillation experiments were able to determine the squared differences

between squares of mass eigenstates, but not their order. Figure 2.2 shows the two

options for the neutrino hierarchy. Successful detection of neutrinoless double β de-

cay would allow bounds to be placed on the absolute mass scale and hierarchy [17] if
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Figure 2.2: Two possible configurations of the neutrino mixing and hierarchy. If
combined with improved measurements of the neutrino mixing angles and the mass
squared differences, a successful measurement of double beta decay can constrain the
absolute mass scale and hierarchy.

the mass squared differences and mixing angles are also known [18]. An observation

of 0νββ decay would break the conservation of lepton number and also immediately

confirm that neutrinos are their own antiparticle (Majorana) rather than being two

distinct particles (Dirac). An unprecedented number of experiments are being devel-

oped to measure this decay.

2.2 Detection Challenges

2.2.1 Detection Methods

There are three techniques used to detect evidence of ββ decay: geochemical, radio-

chemical, and direct detection. In geochemical experiments, samples of very old ore

are carefully analyzed for the presence of ββ emitters and their daughters. Since this

method looks only at the presence of past decays, it measures a total rate for com-
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bined 2νββ and 0νββ decays [19]. In radiochemical studies, a 40-50 year old sealed

sample containing a ββ emitter is chemically purified and analyzed for evidence of

ββ decay [20, 21]. Like geochemical analysis, this method is sensitive to a total decay

rate. The two methods have been used to set lower limits on the half lives of three

isotopes.

The most common method of measuring ββ decay half lives is that of direct

counting experiments. In this method, a large quantity of an isotope is placed in a low-

background environment and decay electrons analyzed. Many experiments take place

underground and are built from extremely low-background material. Direct counting

experiments can distinguish between the two decay methods. 2νββ decay gives off

a total of four particles: two electrons/positrons and two neutrinos/antineutrinos.

Some of the decay energy is lost to the neutrinos, so the total decay energy of the

electrons is therefore a continuous distribution. In 0νββ decay (without emission of

a Majoran χ), the neutrino is reabsorbed, and the sum of the two decay electrons

must equal the total Q value for the reaction. Poor experimental energy resolution

can lead to the tail of the 2νββ decay overpowering a small 0νββ decay signal, so

accurate models of the detector response and simulated 2νββ signal are important.

Figure 2.3 shows a schematic for the a total ββ decay electron energy spectrum.

A plethora of experimental techniques exist for direct detection experiments. The

CANDLES [22] project searches for the decay of 48Ca using CF2(Eu) scintillators.

CARVEL [23] is a competing experiment using 48CaWO4 crystals with an expected

sensitivity of .04-.09 eV. CUORE (a larger version of CUORICINO) [24] uses bolome-

ters to detect thermal energy from electrons emitted by the decay of 128,130Te. CO-

BRA, made of cadmium-zinc-telluride (CZT) detectors, contains five ββ- emitters

and four ββ+ emitters [14]. MAJORANA [25] is constructed of segmented Ge detec-

tors enriched in 76Ge, and together with GERDA [26] (76Ge diodes) it will test the

controversial claim for 0νββ decay detection made by the HEIDELBERG-MOSCOW
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Figure 2.3: Simulation of the ββ decay summed electron spectrum in a direct counting
experiment, taken from reference [18]. Ke is the electron kinetic energy and Q is the
Q value. The 0νββ events fall at Ke=Q=1, while the 2νββ events have a wider
energy distribution. In the inset, the size of the 0νββ decay spectrum is normalized
to 10−6 of the 2νββ decay amplitude. Detector energy resolutions of 5% are folded
into the simulation. (see text)
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Isotope Q value (MeV) Z2Q5 G2ν(1/y) ([30]) T1/2 (y) ([12, 31])

48Ca 4.274 5.7×105 4.0×10−17 4.4+0.6
−0.5 ×1019

76Ge 2.039 3.6×104 1.3×10−19 1.5±0.1 ×1021

82Se 2.995 2.8×105 4.3×10−18 0.92±0.07 ×1020

96Zr 3.347 6.7×105 1.8×10−17 2.3±0.2 ×1019

100Mo 3.035 4.5×105 8.9×10−18 7.1±0.4 ×1018

116Cd 2.004 7.4×104 7.4×10−18 2.8±0.2 ×1019

124Sn 2.287 1.6×105 1.5×10−18 ≥1.0±0.2 ×1017

128Te 0.865 1.3×103 8.5×10−22 1.9±0.4 ×1024

130Te 2.530 2.8×105 4.8×10−18 6.8+1.2
−1.1 ×1020

136Xe 2.468 2.7×105 4.9×10−18 ≥8.1 ×1020

150Nd 3.368 1.6×106 1.2×10−16 8.2±0.9 ×1018

Table 2.1: Recommended half-life values for ββ- emitters. Q values are from NNDC.

experiment [27]. EXO [28] uses liquid xenon calorimeters to detect the ββ decay of

136Xe. MOON [29] is a tracking calorimeter device that looks for the decay of 100Mo.

Several more experiments are either planned or have completed their run, using some

combination of these techniques. Table 2.1 lists the most recent recommended values

for some double-beta half lives.

2.2.2 Detectors for 150Nd ββ decay

In the case of ββ decay from 150Nd, there are three high-sensitivity direct count-

ing experiments planned: SuperNemo [32], DCBA [33], and SNO+ [4]. DCBA is

a magnetic tracking chamber that will be able to trace three-dimensional electron

paths. The detector is still in development, but it should be able to distinguish a

neutrino mass as low as 0.1 to 0.5 eV. See Figure 2.5 for a picture of the prototype.

SuperNemo is the successor to NEMOIII, which contained small slices of several dif-

ferent ββ emitters. SuperNEMO is a calorimetry-based experiment and will look at

either 82Se or 150Nd in more detail. Sensitivity is expected to be around 70 meV.
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Figure 2.4: One module of the SuperNemo detector. Picture credit: [2].

Figure 2.4 shows a single SuperNEMO module. SNO+ is a successor to the SNO

neutrino oscillation experiment, where the heavy water neutrino detector has been

drained and will be replaced with Nd-loaded liquid scintillator. This detector aims

for a sensitivity of around 100 meV [34]. A schematic of SNO+ is shown in Figure

2.6.

2.3 Nuclear Matrix Elements

2.3.1 Half-Life Calculation

150Nd is a popular choice of nucleus because it has a short 2νββ decay half life and is

expected to also have a short half life for 0νββ decay. In order to accurately predict
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Figure 2.5: A prototype of the DCBA detector. Image taken from [3].

what direct detection experiments might see, all parameters of the half life equation

must be well known. The 2νββ decay half life is

[T2ν
1/2

(0+ → 0+)]−1 = G2ν(E0, Z)|M2ν
GT |

2 (2.6)

where G2ν is a phase space factor and is proportional to Z2Q5. It can be calculated

exactly, and 150Nd has the highest value of this quantity. Z2Q5 and G2ν values for

ββ− nuclei are shown in Table 2.1. M2ν can be represented by a double Gamow-Teller

matrix element: a sum over the 1+ states in the intermediate nucleus.

M2ν
GT =

∑

j

< 0+
f

‖ στ ‖ 1+
j >< 1+

j ‖ στ ‖ 0+
i >

Ej +Qββ/2 − E0
(2.7)

The double Gamow-Teller matrix element is the combination of Gamow-Teller matrix

elements for each leg of the decay and comes from second-order perturbation theory.

Chapter 3 will discuss the στ (Gamow-Teller) operator in greater detail. In the
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Figure 2.6: The SNO detector. SNO+ will feature the same acrylic vessel, but will be
held down with a series of ropes to offset the density difference between liquid scin-
tillator and water. Photo credit: Lawrence Berkeley National Lab (Roy Kaltschmidt,
photographer)
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denominator, E0 is the energy of the initial ground state, Qββ is the Q value for

ββ decay, and Ej is the energy of the intermediate state. Contributions from the

various states may interfere either constructively or destructively, so theory must be

used to calculate the relative phases. Because of this, experimental information about

transitions in each leg can constrain but not replace theory. Since the phase space

factor G2
ν is well known (see Table 2.1) and the 2νββ decay half life has been measured

experimentally [35, 36], theorists can check their calculations of the summed nuclear

matrix elements directly. Abad et al. [37] first hypothesized that the presence of a

single low-lying state in the intermediate nucleus was sufficient to predict the 2νββ

decay half life. The idea of single-state dominance (SSD) has become a significant

question in the field. It seems to apply to some nuclei but not to others, and it is

not known whether higher-lying states simply do not contribute to the total matrix

element or whether their contributions cancel [38]. Dvornický et al. [39] recently

proposed that single-state dominance would not be realized in the decay of 150Nd

unless a low-lying 1+ state were measured in 150Pm, thinking higher-state dominance

(HSD) to be more likely.

The 0ν mode of decay is much more complicated than the 2ν mode. A neutrino

reabsorbed in 0νββ decay can have a very large virtual excitation energy in the

intermediate nucleus with an associated momentum transfer around 50-100 MeV/c

[14], because the interaction occurs at a very short range. Therefore, the 0νββ decay

process can go through any intermediate state rather than just 1+ states. The half

life equation is

[T0ν
1/2(0+ → 0+)]−1 = G0ν(E0, Z)|M0ν

GT +M0ν
T +

g2V

g2
A

M0ν
F |2〈mββ〉

2 (2.8)

where G0ν is known [30]. Matrix elements for Gamow-Teller (M0ν
GT ), Fermi (M0ν

F ),

and tensor (M0ν
T ) transitions must be calculated. The final term is the effective
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Majorana neutrino mass:

mββ =

3
∑

k=1

U2
ekmk (2.9)

where U is the unitary neutrino mixing matrix from section 2.1.2 and m is the neutrino

mass eigenstate. Accurate half life calculations are important when planning direct

decay experiments, but if a positive signal of neutrinoless ββ decay is found, half life

must be known to an error of 15-20% to allow for the extraction of the Majorana

neutrino mass [1] with high enough precision to discern the correct neutrino mass

scale and hierarchy [40]. This requires additional work on the nuclear matrix elements

(NMEs).

2.3.2 The Shell Model Approach

The large-scale shell model can be used to calculate the nuclear matrix elements of

ββ emitters. 2νββ decay in 48Ca can be calculated without any truncations to the

pf model space [41]. Recently, Horoi et al. have extended this effort to the calcula-

tion of 48Ca’s 0νββ decay matrix elements [42], though they assumed that negative

parity states in the intermediate nucleus could safely be neglected. Unfortunately,

the prohibitively large model spaces required for heavier nuclei restrict the reach of

the shell model and do not allow for full calculations of these nuclei within complete

model spaces. Caurier et al. did 0νββ decay calculations in limited model spaces

for 76Ge and 82Se when only considering the ground-state-to-ground-state transition

[43]. The Interacting Shell Model has recently allowed for 0νββ decay calculations

in masses up to 136 [44], but these calculations (as well as many QRPA calculations)

rely on the closure approximation. Since the 0νββ decay calculation is so complex,

attempts have been made to reduce the dependence of the calculated nuclear matrix

elements on extensive knowledge of the intermediate nucleus. The closure approxima-

tion [45] collapses the sum over intermediate virtual states to a single matrix element
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and approximates the difference in their excitation energies as an average energy. The

rationalization for this approach is that the virtual neutrino’s high momentum (100

MeV) drowns out the smaller differences in nuclear excitation energy [46]. Errors

from using the closure approximation are estimated to be approximately 10% [47],

but this is still a concern when the matrix elements overall need to be known to

15-20%. More accurate calculations are certainly desirable.

150Nd is both heavy and deformed, and shell model calculations are not yet

available even if the closure approximation is applied, although work on the projected

shell model may produce results in the future [48]. Calculations in the Interacting

Boson Model can provide another tool to calculate ββ decay matrix elements [49].

2.3.3 QRPA

The QRPA (quasiparticle random phase approximation) is based on the RPA (random

phase approximation) method of calculation. Quasiparticles are fermions constructed

from particles and holes via a canonical Bogoliubov transformation. The addition of

quasiparticles to the RPA reproduces ground state pairing correlations more closely

than with particles alone [50]. A full discussion on techniques for solving the QRPA

equations will not be presented here. (See references [46, 51, 50, 52].) However, I will

give a brief overview of recent developments in the field that are of importance to

nuclear matrix element calculations for ββ decay.

The QRPA model was developed to accurately describe collective states, such

as giant resonances. In the words of reference [46], “. . . in the QRPA and RQRPA

(relativistic QRPA) one can include essentially unlimited set of single-particle states

. . . but only a limited subset of configurations (iterations of the particlehole, respec-

tively two-quasiparticle configurations), in contrast to the nuclear shell model where

the opposite is true.”

Two important variants of QRPA are the pnQRPA (proton-neutron QRPA) and

16



cQRPA (continuum QRPA). The pnQRPA [53, 54] was developed to model β decay

and Gamow-Teller excitations in nuclei, and is now one of the most popular techniques

for calculating β decay nuclear matrix elements. Particle-particle and particle-hole

residual interactions are required [55]. The cQRPA [56, 57, 58] allows for the consid-

eration of particle-unbound states and the study of widths and decay properties of

isovector giant resonances (see section 3.3).

2νββ decay calculations in the pnQRPA and cQRPA are very sensitive to the

chosen values of the parameter gpp. This parameter represents the strength of the

particle-particle part of the proton-neutron two-body interaction [54, 59]. It is deter-

mined by the ratio of the particle-particle and particle-hole interaction strengths [60],

and should be on the order of 1. A successful reproduction of the 2νββ decay half

life is often used to check the feasibility of the more difficult 0νββ decay calculation.

There are two main ways to determine the value of gpp: one can fit it to matrix

elements derived from experimental data on the 2νββ decay half-life [61], or one can

use information from single β decay [62]. Most calculations use the first method, but

increased use of charge-exchange experiments to constrain nuclear matrix elements

may change this. The QRPA’s sensitivity to gpp is a cause for concern [42], but using

available data from single- and 2νββ decay should constrain the term enough that

calculations for 0νββ decay can be successfully performed.

Large deformations in some ββ emitters (76Ge, 150Nd) have posed a serious chal-

lenge to theorists [63, 64]. Deformation differences between the mother and daughter

nuclei are thought to decrease the ββ decay nuclear matrix elements because of re-

duced overlap in their wavefunctions [65, 66] in comparison to transitions from one

spherical nucleus to another. Introducing deformations into the QRPA calculations

changes both the location and the shape of Gamow-Teller strengths in the inter-

mediate nucleus. Information on these intermediate states is necessary for accurate

calculations of the nuclear matrix elements, and this can be done with the use of
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charge-exchange experiments.

The group of Vadim Rodin (University of Tübingen) has provided new QRPA cal-

culations for the Gamow-Teller and dipole strengths in 150Pm from both 150Nd and

150Sm. These results will be presented and compared with experiment in Chapters

4, 5, and 6.

2.3.4 Constraining NMEs with charge-exchange experiments

Intermediate-energy charge-exchange experiments (see Chapter 3) can be used to

preferentially populate Gamow-Teller transitions in the intermediate nucleus between

the ββ mother and daughter. Transitions in the β+ direction may take place using

the (n,p), (d,2He), (t,3He), or (7Li,7Be) reactions, and transitions in the β- direction

may use the (p,n) or (3He,t) reactions.

Since all ββ mothers and daughters have a ground state Jπ of 0+, the Gamow-

Teller transitions (∆L=0,∆S=1) go to 1+ states. 2νββ decay should proceed largely

through 1+ states, and knowledge of the exact location and the strengths with these

states are populated is important for accurate nuclear matrix element calculations.

Charge-exchange experiments will also populate other multipoles, such as dipole and

quadrupole transitions, which are significant in calculations of 0νββ decay matrix

elements [61]. Figure 2.7 shows the population of intermediate states in 150Pm via

charge-exchange reactions on 150Nd and 150Sm.

A collaborative effort is underway to systematically measure charge-exchange tran-

sitions in ββ decay nuclei. Older (p,n) and (n,p) data sets are being augmented by

new data, and this approach allows for Gamow-Teller contributions to be measured

up to high excitation energy. 48Ca(p,n) and 48Ti(n,p) were recently re-measured by

Yako et al. [67]. Unfortunately, (n,p) measurements suffer from poor (∼1 MeV) en-

ergy resolution, which makes spectroscopy of low-lying states very challenging. Use of

more complex probes (such as (t,3He) and (d,2He)) has brought (n,p)-direction reso-
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Figure 2.7: Population of intermediate states in 150Pm via the (t,3He) and (3He,t)
charge-exchange reactions. This figure is a schematic, and levels shown do not corre-
spond to the location of actual levels. Figure by R.G.T. Zegers.
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lutions down to 110-300 keV. In the (p,n) direction, high-resolution beams of 3He are

regularly produced at RCNP, and (3He,t) experiments can achieve a 20-40 keV resolu-

tion. Recent measurements include 96Mo(d,2He) [68], 76Se(d,2He) [69], 64Zn(d,2He)

[70], 100Mo(3He,t) and 116Cd(3He,t) [71], 48Ti(d,2He) [72], and 48Ca(3He,t) [73].

Data on several more nuclei exist but have not yet been published. The measure-

ments of 150Nd(3He,t) and 150Pm(t,3He) described in this document are the first

such measurements to address the ββ decay of 150Nd.
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Chapter 3

Charge-Exchange Reactions

3.1 Introduction to Charge-Exchange Reactions

Extensive programs in charge-exchange (CE) reactions have been developed in the

last half century (see [74, 75] and references therein) to probe the spin-isospin response

of nuclei. Charge-exchange reactions are characterized by an isospin transfer (∆T) of

1, and can excite a number of different transitions. Table 3.1 provides a partial list.

In hadronic charge-exchange, a proton (neutron) transitions into a neutron (proton).

The process can be modeled by the exchange of π (and other) mesons between the

projectile and the target, where the projectile may consist of a single nucleon or be

a composite probe. Pion charge-exchange has also been used as a probe [76], but

will not be discussed in any detail here. Although charge-exchange is mediated by

the strong interaction and β decay by the weak interaction, the same final and initial

states are populated. The Fermi and Gamow-Teller transitions correspond to the two

types of allowed β decay, and the other transitions correspond to various types of

forbidden β decays. In a β decay experiment, states may be seen in an excitation

energy region from 0 MeV up to the Q value of the reaction, but higher-lying states

will not be accessible. Charge-exchange reactions allow for the excitation of higher-
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∆L ∆S ~ω 0+ → Jπ

0 0 0 0+ Fermi

0 1 0 1+ Gamow-Teller

1 0 1 1− dipole

1 1 1 (0,1,2)− spin-dipole

2 0 0,2 2+ quadrupole

2 1 0,2 (1,2,3)+ spin-quadrupole

3 0 1,3 3− octupole

3 1 1,3 (2,3,4)− spin-octupole

4 0 0,2,4 4+ hexadecapole

Table 3.1: Charge-exchange excitations and their quantum numbers. All have ∆T=1.
A 0+ ground state is assumed. The ~ω column refers to a transition between major
oscillator shells (i.e. a ∆~ω=1 could represent a transition between the sd- and pf-
shells).

lying states and give a complementary description of the spin-isospin response of a

nucleus.

Gamow-Teller (GT) strength is represented by B(GT). The GT transition is me-

diated by the στ operator. If the general forms of a CE particle-hole operator are

Oλτ =
∑

j

rλj Yλ(r̂j)t±j (3.1)

for no-isovector spin-flip transitions and

Oλστ =
∑

j

rλj [Yλ(r̂j) ⊗
−→σj ]Jπt±j (3.2)

for isovector spin-flip transitions, setting λ to 0 results in the Fermi and GT operators

from β-decay:
∑

j

t±j and
∑

j

−→σjt±j [77]. (3.3)

λ corresponds to ∆L+∆n, where ∆n is the change in major oscillator shell.
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Equation 3.4 gives the relationship between B(GT) and the στ operator in β-

decay. ψI and ψF are the initial and final nuclear states, and gA is the axial-vector

coupling constant of the weak interaction.

B(GT )± =
1

2J + 1

∣

∣

∣

∑

j

〈ψF ||σjτ
±
j ||ψI 〉

∣

∣

∣

2
(3.4)

In 1963, Ikeda et al. [78] developed a non-energy-weighted sum rule for the total

amount of GT strength that should be seen in CE transitions from a given nucleus.

Ikeda’s model-independent sum rule is

S(β−) − S(β+) = 3(N − Z). (3.5)

Fermi strength has a similar sum rule:

S(β−) − S(β+) = N − Z. (3.6)

The GT sum rule provides a useful upper limit on the amount of strength an exper-

imentalist is likely to see, although in most cases only 50-60% of the expected sum

rule strength can be accounted for (for an example, see reference [79]). This is known

as the quenching problem [80, 81, 82, 83], and will be discussed in Chapters 4 and 5.

Sum rules also exist for higher multipole excitations (see reference [77] for examples).

A charge-exchange reaction can go in either of two directions: ∆Tz=±1. ∆Tz=+1

corresponds to an (n,p)-type reaction, which goes diagonally down and to the right

on a chart of nuclides. ∆Tz=-1 corresponds to a (p,n)-type reaction, which goes

diagonally up and to the left on a chart of nuclides. Figure 3.1 shows both types

superimposed upon a small section of the chart of nuclides of relevance for this thesis.

Figure 3.2 shows a more thorough picture of isospin in CE reactions. The target

nucleus has Tz=(N-Z)/2. For a (p,n)-type transition, a T0 ground state in the target
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Figure 3.1: Schematic of charge-exchange on a subset of the chart of nuclides. Nu-
clei of interest (150Nd,Pm,Sm) are shown. The transition from 150Sm to 150Pm

represents an isospin change of ∆Tz=+1, and the transition from 150Nd to 150Pm
represents an isospin change of ∆Tz=-1.

has an analogue T=T0 state (the Isobaric Analogue State) in the residual. In general,

a (p,n) transition can populate T0+1, T0, and T0-1 states in the residual nucleus.

In an (n,p)-type transition, the residual has a minimum isospin of T=T0+1, so only

states with isospin of T0+1 can be populated.

Figure 3.3 shows the microscopic picture of CE reactions as excitations of proton-

holes/neutron-particles (∆Tz=+1) and neutron-holes/proton-particles (∆Tz=-1). In

medium-to-heavy stable nuclei with a significant neutron/proton asymmetry, the neu-

tron single-particle orbits are filled above the proton Fermi level. Pauli blocking

constrains the single-particle orbits involved in a transition: excitations of 1p-1h

components in the same oscillator shell are hindered in the (n,p) direction.
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Figure 3.2: Isospin symmetry in charge-exchange reactions. States of like isospin
(analogue states) are shown in like colors. In the (p,n) direction, the IAS is populated
from a T0 to T0 transition, but no such transition can occur in the (n,p) direction.

Protons Neutrons

(  He, t)3

Protons Neutrons

(t,  He)3

X

Figure 3.3: Pauli blocking is strong for the (t,3He) reaction and reduces transition

strengths, but is not as significant in the (3He,t) direction.
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3.2 Reaction Theory

Cross section calculations in this thesis are performed using DWBA (Distorted Wave

Born Approximation) methods with the code FOLD [84]. The incoming and outgoing

waves are distorted by the nuclear mean field of the target. An effective potential

(Veff ) describes the interaction between nuclei in the target and the projectile. The

cross section can be determined from the square of the amplitude of the outgoing

spherical wave. A T-matrix represents the transition between final and initial states.

Input from single-particle wave functions, one-body transition densities (OBTDs),

the nucleon-nucleon interaction, and optical potentials result in calculated angular

distributions for each type of charge-exchange transition listed in Table 3.1. These

angular distributions are then compared to data. Absolute Gamow-Teller and Fermi

strengths are calculated with the help of a phenomenological unit cross section.

3.2.1 DWBA

The scattering potential (V) is separated into two pieces: the distorting potential from

the nuclear mean field (U1) plus a residual interaction (U2) containing the physics

of interest. The Schrödinger equation is then

(E − T − U1 − U2)ψ = 0 (3.7)

and the wavefunction may be written as a partial Lippmann-Schwinger equation

ψ = φ+ Ĝ+
0 (U1 + U2)ψ, (3.8)
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where φ is the homogeneous solution to the Schrödinger equation and Ĝ+
0 is a Green’s

function equal to (E − T )−1. The resulting T-matrix is

Ttot = −
2µ

~2k
< φ−|V |ψ > . (3.9)

When V is expanded into U1 + U2, the expression for the T-matrix can be simplified

to

−
~
2k

2µ
Ttot = TU1 + TU2 =< φ−|U1|χ > + < χ−|U2|ψ >, (3.10)

where χ is φ after being distorted by the mean field of the nucleus:

χ = φ+ Ĝ+
0 U1χ. (3.11)

Expanding χ into a series yields the Born Series

TU2 = −
2µ

~2k
< (χ+ χU2G

+
1 + . . .)|U2|χ >, (3.12)

where G+
1 is equal to (E − T − U1)−1. TU1 can be ignored, since U1 does not

connect the initial and final states. The T matrix for DWBA calculations is then

TDWBA = −
2µ

~2k
< (χ−|U2|χ > . (3.13)

(Notation and equation sequence largely taken from reference [85].) In many cases,

the Born series is truncated at the first term, and this approximation is known as a

first order Distorted Wave Born Approximation (DWBA). The reaction cross section

is proportional to the square of the T-matrix element governing the transition between

initial and final states

dσ

dΩ
=
( µ

2π~2

)2kf

ki
|Tfi|

2. (3.14)
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When U1 of the DWBA is a central optical potential, TU1 is 0 and TU2=Tfi.

Tfi = TU2 = −
2µ

~2k
< χ|U2|χ > . (3.15)

DWBA calculations in this work were carried out using the FOLD code. FOLD [84]

is a three-part program for charge-exchange reaction calculations originally developed

by J. Cook and J.A. Carr in 1988. The three separate sections of this code are called

WSAW, FOLD, and DWHI.

WSAW uses numerical methods to solve for single-particle radial wave functions

of relevance to the DWBA calculation. A Wood-Saxon potential is used to represent

the volume section of the total potential, and Coulomb and spin-orbit potentials are

also taken into account. The input of WSAW consists of binding energies and shell

model quantum numbers for single-particle orbits. Output wave function files are

then read into the FOLD code along with other input parameters.

3.2.2 One-body transition densities

Wave functions from WSAW are single-particle wave functions. The DWBA nuclear

structure input for each calculation involves a combination of 1p-1h transitions be-

tween single-particle orbits.

The relative weight of each 1p-1h transition is given by its OBTD. OBTDs contain

information on the overlap between the final and initial nuclear states [51] and must

be calculated for both the projectile/ejectile and the target/residual systems. A

nuclear structure code (often a shell model code like OXBASH [86] or NuShellX

[87]) calculates the importance of each single-particle transition, calculates phase

factors, incorporates all of the necessary angular momentum coefficients, and returns
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an OBTD. The OBTD formula in an isospin framework is

OBTD(fikαkβλ∆T ) =
< fT ‖ [a

†
kα

⊗ ãkβ ]λ,∆T ‖ iT ′ >
√

(2λ+ 1)(2∆T + 1)
[88] (3.16)

where a† and ã are single-particle creation and annihilation operators, f and i repre-

sents the final and initial quantum numbers, λ is the rank of the operator, kα,β are

final and initial isospin states, and ∆T is the change in isospin.

150Nd and 150Sm are too heavy to calculate the OBTDs in the shell model

because the model space is too large. A normal modes formalism [89] is used instead.

Normal modes are the most coherent superposition of 1-particle 1-hole states for a

particular operator in a given particle-hole basis. They exhaust full (non-energy-

weighted) sum rule strengths and give a set of OBTDs for each type of transition

associated with the operator Oλστ . However, the downside of this method is that

no information is provided on the strength distribution as a function of excitation

energy.

The following bases were used in calculations in this thesis: 150Sm (150Pm)(150Nd)

was assumed to have 32 (31)(30) protons (4 (3)(2) in the 2p 3/2 shell) and 88 (89)(90)

neutrons (6 (7)(8) in the 1h 9/2 shell). The neutron space included the 1h 11/2 level

for the 150Sm→150Pm calculation to allow for GT transitions — without this modi-

fication, Pauli blocking would prevent all GT transitions. To accommodate all of the

transitions relevant for this work, the model space was allowed to include orbits up

through 1i 11/2.

3.2.3 The nucleon-nucleon interaction

The free nucleon-nucleon interaction V12 takes the form

V12 = V C(r12) + V LS(r12)
−→
L ·

−→
S + V T (r12)S12, (3.17)
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where VC is the central potential, VLS is the spin-orbit potential, VT is a tensor

potential, and 1 and 2 refer to the two interacting nucleons.
−→
L ·

−→
S is the spin-

orbit operator and S12 is the tensor operator. In their 1981 paper, Love and Franey

[90, 91, 92] determine V12 with the use of a large body of nucleon-nucleon scattering

data. They decompose Vc(r), VLS(r), and VT (r) in terms of Yukawa potentials with

the form e−x
x , chosen for their similarity to the one-pion exchange potential (OPEP).

The three potentials become

V C (r) =

NC
∑

i=1

V Ci Y
( r

Ri

)

V LS(r) =

NLS
∑

i=1

V LSi Y
( r

Ri

)

V T (r) =

NT
∑

i=1

V Ti r2Y
( r

Ri

)

.

(3.18)

These sums run over Yukawa potentials with different ranges that reflect the ranges

of the π, ρ, and 2-π meson exchange. The result of Love and Franey’s work was a

set of effective nucleon-nucleon t-matrix interaction strengths applicable to a wide

variety of nucleon-nucleus scattering techniques, such as (p,p’) and (p,n). While the

full effective interaction has many terms, the ones important for charge exchange are

Veff =
∑

ij

(

V Cτ Y
(rij

Rτ

)

+ V CστY
( rij

Rστ

)

(σ̂i · σ̂j) + V LSτ Y
( rij

RLSτ

)

L · S

+V Tτ r2ijY
( rij

RTτ

)

Sij

)

(τ̂i · τ̂j) [93].

(3.19)

(The sum over i and j runs over all nucleons in the projectile and target.) Love

and Franey showed that the στ component is preferentially excited at energies above

100 MeV/u and below 500 MeV/u, where the τ contribution is at a minimum (see
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Figure 3.4: Relative operator strengths for the στ and τ t-matrices, from reference
[91]. The στ t-matrix is significantly stronger than the τ t-matrix at energies above
100 MeV/u, which allows charge-exchange experiments to preferentially populate στ
transitions over τ ones. Values come from reference [91].

Figure 3.4). In addition to the dominance of the στ term above 100 MeV, this energy

regime also features decreased contributions from multi-step processes and decreased

distortion effects from the central isoscalar potential. Near zero momentum transfer,

the LSτ term is so small it is negligible (it is also taken out of FOLD calculations).

Contributions from the Tτ interaction are small, but must be taken into account

for non-zero momentum transfer as they create amplitudes that interference with

amplitudes mediated by Vστ .

A two-body interaction between nucleons is represented by “direct” and “ex-

change” terms. The exchange term represents amplitudes due to processes where
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a nucleon in the target is struck and ejected and the projectile nucleon is captured

[77]. The exchange term contains non-local effects, which makes it much more difficult

to calculate. A short-range (no-recoil) approximation is often used [90] to deal with

the exchange terms, although it is known to underestimate the destructive exchange

contributions for reactions involving complex probes like (t,3He) and (3He,t) [94, 95].

3.2.4 FOLD

The Love-Franey interaction is an effective nucleon-nucleon interaction, but CE with

complex probes involves a nucleus-nucleus interaction. In order to calculate the cor-

rect T-matrix, the effective nucleon-nucleon interaction must be double-folded (in-

tegrated) over the transition densities of the projectile/ejectile and target/residual

systems to create a form factor:

F (r) = U2(r) =< αeαr|Veff (r)|αtαp >, (3.20)

where αe,r,t,p represent the ejectile, residual, target, and projectile wavefunctions,

respectively. The FOLD code carries out the double-folding procedure and produces

this form factor.

Each type of transition requires its own FOLD input file. For the 150Nd and

150Sm experiments, the use of normal-mode OBTDs means that only one form fac-

tor is available for each type of Jπ transition. (If QRPA or shell model transition

densities were available, form factors for many states of the same Jπ could be calcu-

lated.) Depending on the excitation, several form factors might have to be calculated:

these correspond to different units of angular momentum transfer between the target

and the projectile. Contributions to the cross section from each form factor are then

added. As an example, in a GT transition the relative change in total angular mo-

mentum is ∆J=1 (∆L=0, ∆S=1) for both the projectile/ejectile and target/residual
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systems. The relative angular momentum transfer can be calculated from that in the

projectile and target

JR = JP + JT . (3.21)

In this case, JP=1 and JT=1, so JR can be either 0 or 2 (1 is forbidden due to parity

conservation). A form factor is calculated for each JR.

Calculations were done for all of the multipoles listed in Table 3.1 using OBTDs

from NORMOD (with the exception of octupole transitions, where only the 3- spin-

flip octupole was calculated).

3.2.5 DWHI

As mentioned in section 3.2, the incoming and outgoing particles are represented by

plane and spherical waves distorted by the optical potential. DWBA calculations ac-

count for this effect. Form factors are integrated with the distorted waves to calculate

the T-matrix

T =< χf |F (r)|χi >, (3.22)

which is then used in Equation 3.14 to calculate the cross section.

A common way to determine optical potential parameters is to take elastic scat-

tering data with the same experimental setup used for the experiment you wish to

apply it to — using the same projectile, the same target, and the same beam energy.

Optical potentials are fit to the cross sections from this elastic scattering data. Pro-

grams such as ECIS (used here) [96] or SFRESCO [97] are used. Real and imaginary

Wood-Saxon functions (volume, radius, and diffuseness parameters) are used as the

base for the fit, and the complexity of the fit can increase if extra functions are in-

cluded to account for surface or spin-orbit potentials. As DWHI is set up to handle

only volume-type optical potentials, these extra functions were not used.

In many cases, optical potentials are not available: they may be very difficult
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to measure, or it may be almost impossible to get beam time to do the measure-

ment. Fit parameters are then extrapolated from known potentials. Some efforts

have been made to establish global potentials from simultaneous analysis of many

elastic scattering experiments. For the two experiments discussed in this work, the

150Nd(3He,3He) optical potential was measured following the 150Nd(3He,t) exper-

iment. A measurement of the 150Sm(t,t) reaction was not feasible, so the 150Nd

optical potential from was scaled by 85% for the 150Sm(t,3He) experiment (following

reference [98]). This is a purely phenomenological solution and has been employed in

other (t,3He) experiments. More details of the optical potential measurement will be

discussed in section 4.3.2.

3.2.6 The unit cross section and B(GT)

Taddeucci et al. found a quantitative description [99] of the proportionality between

the Fermi and Gamow-Teller cross sections and beta decay:

dσ

dΩ

∣

∣

∣

q=0
= KN |Jτ |

2B(F ) = σ̂FB(F ), (3.23)

dσ

dΩ

∣

∣

∣

q=0
= KN |Jστ |

2B(GT ) = σ̂GTB(GT ) [99], (3.24)

where σ̂F and σ̂GT are phenomenological unit cross sections. N is a distortion factor

(the ratio of distorted to plane waves, and here the transformation to q=0 has been

included)

N =
σDW (q = 0)

σPW (q = 0)
[99, 100], (3.25)

K is a kinematical factor that includes the momenta (ki and kf ) and reduced energies

(Ei and Ef ) for both the entrance and exit channels

K =
EiEf

(~2c2π)2

kf

ki
, (3.26)
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and Jστ (or Jτ ) is the volume integral of the corresponding effective interaction

(see equation 3.19). In his derivation, one of Taddeucci’s assumptions was that the

Eikonal approxmation was valid — both the projectile and ejectile trajectories are

well-represented by straight lines and the beam energies are much higher than the

excitation energy. These conditions are satisfied for CE experiments at E>100 MeV/u

and q≈0. The Eikonal approximation comes into play because its use allows the

different components of the T-matrix to be factorized into a nuclear structure and

a nuclear reaction part [101, 99]. While the factorization is only exact in the plane

wave approximation [101], experiments have shown that it also works well for distorted

waves in ∆L=0 transitions [99, 95].

The proportionality of Equation 3.24 can be checked using GT strengths obtained

from beta decay experiments [102]. The unit cross section for both Fermi and Gamow-

Teller transitions are simple functions of the mass number A [99]. Figure 3.5 shows

this dependence for the (3He,t) reaction [95]. Where there are differences in the

calculated and measured unit cross sections, interference between VCστ and VTτ is

thought to partially explain this difference. One example is the case of 58Ni, where

removing contributions from the tensor interaction (based on theory) restored the

proportionality of Equation 3.24 and brought the data point back to the phenomeno-

logical curve [103].

3.3 Giant Resonances

In a macroscopic picture, giant resonances are defined as a density oscillation of

proton-neutron nuclear fluid. The two fluids form overlapping spheres in the nucleus.

Density oscillations of these spheres can fall into one of two categories: isoscalar,

if the two fluids move in phase, or isovector, if they move out of phase. Isovector

resonances are further separated by whether particles with opposite spins move in or
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Figure 3.5: To the left, the Fermi unit cross section as a function of mass number for
(3He,t) data taken at 420 MeV. At the right, the dependence of the Gamow-Teller

unit cross section as a function of mass number for (3He,t) data taken at 420 MeV.

The data point completely off of the fit line corresponds to the case of 58Ni, and the

difference is due to the interference of VTτ with VCστ [103]. Both figures are adapted
from reference [95].
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out of phase. Those resonances with a spin dependence are known as isovector spin

giant resonances (represented by an extra S in the abbreviation). Figure 3.6 shows

the oscillatory modes for several giant resonances.

A microscopic picture of giant resonances may be constructed by considering a

coherent superposition of many particle-hole excitations. If a large number of particle-

hole pairs are excited (collective excitations), single-particle characteristics are washed

out [77].

The amount of collective motion present may be observed by comparing the total

multipole strength seen with that predicted by a sum rule. Examples include the

Fermi and Gamow-Teller sum rules mentioned in section 3.1. A general expression

for the non-energy-weighted sum rule (NEWSR) for transitions with multipolarity λ

≥ 1 is

SλJ− − SλJ+ =
2J + 1

2π
(N < r2λn > −Z < r2λp >) [104]. (3.27)

Spin transfer is ignored in this equation. Giant resonances are defined to fulfill over

50% of the relevant NEWSR [77].

Table 3.2 provides the quantum numbers, approximate centroid, and excitation

energy for monopole, dipole, and quadrupole giant resonances. The resonances are

categorized based on angular momentum, spin, and isospin transfer. The single as-

terisks of Figure 3.6 indicate that the spin polarizations of the IVSGMR, IVSGDR,

and the IVSGQR can be drawn in two different ways. For example, in the IVSGMR

you can have protons with spin up and neutrons with spin down or protons with spin

down and neutrons with spin up.

Isovector giant resonances have three isospin components in the (3He,t) direction.

The total strength will be split between T0+1, T0, and T0-1 isospin levels. The

relative population strengths of each level is dependent on the isospin of the target

nucleus. The strength of the T0+1 level is weighted with a factor of 1
(T0+1)(2T0+1)

,
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Figure 3.6: Giant resonance modes from Table 3.2. p and n represent protons and
neutrons, and the small triangles indicate spin. Arrows show the proton and neutron
directions of motion. Single asterisks denote resonances for which more than one
accurate picture can be drawn: the spin polarization of protons and neutrons can be
either spin up or spin down. The double asterisk by the ISGDR indicates that this is
a second-order resonance. Neither this figure nor Table 3.2 is meant to be exhaustive;
higher-order resonances exist but will not be discussed in this work. See [77] for more
detailed information. The figure was modified from [105].
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Resonance name ∆L ∆S ∆T EX (MeV)

ISGMR 0 0 0 80A−1/3

IVGMR 0 0 1 59.2A−1/6

IVSGMR 0 1 1 *

ISGDR 1 0 0 120A−1/3

IVGDR 1 0 1 31.2A−1/3+20.6A−1/6

IVSGDR 1 1 1 *

ISGQR 2 0 0 64.7A−1/3 (heavy nuclei) )

IVGQR 2 0 1 130A−1/3

IVSGQR 2 1 1 *

Table 3.2: Isoscalar and isovector giant resonances, from [77]. IS stands for isoscalar,
IV for isovector, and IVS for isovector-spin. Likewise, GMR stands for giant monopole
resonance, GDR for giant dipole resonance, and GQR for giant quadrupole resonance.
The excitation energy given is approximate and based on the hydrodynamic model,
and may be changed by significant deformation. See Figure 3.6 for a drawing of the
various modes. * The IVSGDR and IVSGQR have three spin components (the middle
resonance will have an excitation energy similar to the no-spin-flip resonance of the
same type), while the IVSGMR has one spin component. All resonances in the (p,n)
direction also have three isospin components, but one is preferentially populated (see
text for more details).
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Figure 3.7: IVSGMR schematic for 150Nd → 150Pm. Monopole excitations are
represented by very thick lines, and isobaric analogue levels in 150Nd and 150Pm are
connected by thin dotted lines.

the T0 level with a factor of 1
T0+1, and the T0-1 level with a factor of

2T0−1
2T0+1. For

the 150Nd(3He,t)150Pm case (the target isospin is 15), these correspond to values

of 0.002, 0.0625, and 0.9355, so we expect the T0-1 resonance to dominate. In the

(t,3He) direction, all of the strength goes into the T0+1 isospin component because

it is the only one that can be populated. The IVSGMR has only one spin component,

but the IVSGDR and IVSGQR resonances have three spin components on top of

their isospin components: from a 0+ ground state, 0−, 1−, and 2− states can be

populated through the IVSGDR, and 1+, 2+, and 3+ states through the IVSGQR.

For example, let’s examine the population of the IVSGMR in 150Pm as excited

from 150Nd and 150Sm. In the (3He,t) direction, Bohr and Mottelson [106] predict

that the (T0-1) IVSGMR can be found at an energy of δ=(T0 +1)V1A
−1 lower than

the T0 monopole resonance:

EIV SGMR
x = V0A

−1/3 + EIASx (T ) − δ (3.28)

where V0 is around 155 and V1 is 55 [107, 105]. This equation predicts a resonance

centroid of 37.5 MeV. Figure 3.7 shows the relevant schematic.
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Figure 3.8: IVSGMR schematic for 150Sm → 150Pm. Monopole excitations are rep-
resented by very thick lines, and isobaric analogue levels are connected by dotted lines.
Differences in excitation energy between analogue levels are close to the Coulomb dis-
placement. The excitation energy of the IVSGMR in 150Pm is represented by the
quantity X, which has isobaric analogues in both 150Sm and 150Eu.

The situation in the (t,3He) direction is more complicated. Figure 3.8 shows

this situation. There are no other quantities in the residual nucleus with which to

calculate the excitation energy, but the analogue state in 150Eu can be calculated

and that excitation energy can then be extrapolated back to 150Pm based on isospin

symmetry. The excitation energy in 150Eu is ǫ=(T0)V1A
−1 above the T0 monopole

resonance, and the excitation energy in 150Pm can be found by subtracting twice the

energy of the Coulomb displacement from the 150Eu value.

EIV SGMR
x (150Pm) = V0A

−1/3 + EIASx (T )(in150Eu) + ǫ− 2VC (3.29)

and

∆VC = 0.7046
2Z + 1

A1/3
(1 −

0.76

Z2/3
). (3.30)

For values of VC=16.5 MeV and ǫ=4.77 MeV, the EIV SGMR
x in 150Pm is predicted

to be around 15 MeV.

Centroids of the dipole and quadrupole resonances can be calculated in a similar

fashion.
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Chapter 4

150Nd(3He,t)150Pm* at RCNP

4.1 RCNP Experimental Setup and Procedure

4.1.1 Beam preparation and tuning

The Research Center for Nuclear Physics (RCNP) in Osaka, Japan, has a well-

developed program of experiments with intermediate-energy 3He2+ beams. The AVF

and the Ring cyclotrons are coupled to accelerate a beam of 3He nuclei to 420 MeV

and achieve beam intensities of up to 5×1010 particles per second. The faint-beam

method is used to check dispersion-matched tuning [108, 109] in the WS beam line

[110, 111] (see Figure 4.1 for the WS floorplan). Excitation energy resolutions of

20-40 keV can be achieved.

The Grand Raiden Spectrometer [112] (see Figure 4.5) is used to analyze the mo-

mentum of tritons from (3He,t) experiments taking place at RCNP. It contains three

dipole magnets, two quadrupoles, one sextupole, and one multipole magnet. The

multipole magnet can produce dipole, quadrupole, octupole, sextupole, and decapole

fields to correct for aberrations in the ion optics. One magnet, the DSR (dipole mag-

net for spin rotation), is meant for polarized beam experiments and was not used

in this work. The Grand Raiden focal plane contains two sets of Multi-Wire Drift
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Chambers (MWDCs), which were used to collect position and angle information.

Each MWDC has two planes of anode wires in between its three cathode planes: the

X layer has wires perpendicular to the “medium plane” of the spectrometer and the

U plane has wires at a 48.19◦ angle [112] with respect to that plane. “Potential”

wires are charged to create a uniform electrical potential [113], and “sense” wires are

grounded and detect ionization electrons. Cathode voltages were set to -5.6 kV and

potential wire voltages were set to -0.3 kV. The MWDCs were filled with a mixture of

71.4% argon, 28.6% isobutane, and a very small amount of isopropyl alcohol [113, 114].

Drift times from the four sets of anode wires give position resolutions around 300µm

in each plane. A set of two 10mm-thick plastic scintillators placed behind the drift

chambers is used to measure energy loss and time-of-flight information for each hit,

and the first scintillator triggers the data acquisition system and serves as the start of

the time of flight measurement. The cyclotron RF provides the stop signal. A 1 mm

aluminum plate placed between the scintillators improves the particle identification

(PID) by increasing the energy lost in the second scintillator (see Figure 4.6). For

more information on the parameters of the Grand Raiden, see Table 4.1. Event rates

were such that the data acquisition live time during the experiment was 96%.

One of the primary considerations in planning a charge-exchange experiment is

to optimize the measured energy resolution of the ejectile, which (in combination

with angular resolution) determines the excitation energy resolution in the residual.

This is accomplished by carefully considering the type of probe and target thickness,

but use of dispersion-matched rather than focused beam optics prior to the target

can increase the resolution by up to a factor of 3 (for a 3He beam at RCNP — the

increase is closer to a factor of 5 for the tritium beam at the NSCL). Dispersion-

matching techniques were employed for both the 150Nd(3He,t) and 150Sm(t,3He)

experiments (see Chapter 5). The beam is momentum-dispersed on the target to

match the dispersion of the spectrometer, and the spectrometer then focuses the beam
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Figure 4.1: The WS beamline at RCNP. Figure taken from reference [111].

44



Figure 4.2: Ion optical modes for high-resolution spectrometers. The beam trajecto-
ries represent different incoming momenta. a) shows focus mode, which focuses the
beam at the target and disperses the ejectiles throughout the focal plane. b) shows
dispersion-matched mode with lateral dispersion-matching only. The momentum-
dispersed beam hits the target and creates a large beam spot in the dispersive di-
rection, but the ejectiles have different angles coming into the focal plane. c) shows
a dispersion-matched mode with both lateral and angular dispersion-matching. The
ambiguity in the ejectile angle at the focal plane is considerably reduced. The figure
is taken from reference [109].

at a single point in the focal plane. In a lateral dispersion-matched tune, the beam

coming into the target area is focused along the spectrometer’s non-dispersive axis

and momentum-dispersed along the spectrometer’s dispersive axis. This produces a

long, thin beam spot. The lateral dispersion-matching technique can result in angular

ambiguities [109] in the dispersive direction unless angular dispersion matching is also

applied. In this process, the beam line is tuned so that tracks incident at different

angles to the target have the same angle in the focal plane [110]. Both types of

dispersion-matching were used in the 150Nd(3He,t) experiment. Figure 4.2 shows

the beam optics for focus matching, lateral dispersion-matching, and simultaneous

lateral and angular dispersion-matching. Figure 4.3 shows an image of the beam spot

from the 150Nd(3He,t) experiment.

The faint beam method is used to tune the dispersion-matching. In this method,

an attenuated beam is sent directly into the spectrometer without hitting a target
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Figure 4.3: Dispersion-matched beam image at the target of the Grand Raiden [112]
spectrometer. The viewer dimensions are circled in red. Targets are around 2 cm by
2 cm or slightly smaller, and the beam spot is a bit less than 1 cm long.

foil. The dispersion of the beam can then be fine-tuned by optimizing the image in

the focal plane, and the absence of a target foil ensures that the measured resolution

is intrinsic to the beam rather than energy straggling in a target. Four target foils

were used to aid in the beam tuning in the 150Nd experiment: a ZnS viewer, 27Al

to check energy resolution, and 197Au and 13C to optimize the angular calibrations.

Once tuning was complete, strong Gamow-Teller transitions from a natMg target

were used to calibrate the triton momentum.

Nd foils oxidize quickly, so a special container was used to keep the foils in vacuum

during the transfer from a glove box to the target chamber. Both foils were made from

150Nd enriched to 96% purity (see Figure 4.4). They were thin and self-supporting,

with thicknesses of 1 mg/cm2 and 2 mg/cm2. Excellent beam tuning and thin foils

allowed us to achieve an energy resolution of 32 keV FWHM. The difference in energy

loss between the 3He++ particles and tritons in the target is 8 keV (as calculated in

LISE++ [115]), and does not limit the resolution.
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Figure 4.4: The 150Nd targets used in the experiment, 1 mg/cm2 and 2 mg/cm2.

To optimize the angular resolution, an optical technique called “over-focus mode”

was used [108]. The ion optics of the Grand Raiden are such that the non-dispersive

angular magnification between target and focal plane is 0.17 [114] in focused mode. A

large non-dispersive angle at the target (Θta) corresponds to a small non-dispersive

angle (Θfp) in the focal plane in focus mode, which, for a given angular resolution

in the focal plane, makes it difficult to reconstruct Θta with good precision. To

improve this situation, the field of the Q1 quadrupole magnet is changed to place the

non-dispersive optical focus outside of the focal plane, producing a large yfp (non-

dispersive position at the focal plane) that is directly proportional to Θta and has a

small relative error. The proportionality changes as a function of xfp.

When centered around 0◦, the Grand Raiden can accept particles in the ranges of

0-2◦. To increase the angular range available for this experiment, the spectrometer

was rotated to take data at Θhor=2.5◦ and Θhor=4◦. Figure 4.7 shows the Grand

Raiden’s angular acceptances for the three data sets. Each rectangle represents an

angular range of ± 20 mrad horizontally and ± 40 mrad vertically, for a total solid

angle of 3.2 msr. After the 150Nd(3He,t) data was taken, one day was allocated for
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Figure 4.5: Schematic of the Grand Raiden Spectrometer. Image from Ref. [113].

Parameter Value

momentum resolution (∆p/p) 2.7 ×10−5

energy resolution (∆E/E) 4.5 ×10−5

position resolution 300 µm (both horizontal and vertical)
maximum Bρ 5.4 Tm
maximum B (D1 and D2) 1.8 T
maximum magnetic gradient (Q1) 0.13 T/cm
maximum magnetic gradient (Q2) 0.033 T/cm
momentum range 5%
focal plane tilt 45◦

mean orbit radius 3m
total deflection angle 162◦

angular range -5 to 90◦

horizontal magnification (x—x) -0.417
vertical magnification (y—y) 5.98
maximum momentum dispersion 15.45 m
horizontal acceptance angle ±20 mr
vertical acceptance angle ±40 mr (in over-focus mode)
solid angle 5.6 msr (3.2 in over-focus mode)
weight 600 tons

Table 4.1: Parameters of the Grand Raiden Spectrometer
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Figure 4.6: Particle identification from the plastic scintillator signals at the Grand
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MWDCs.
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3.3

Figure 4.7: The angular acceptance of the Grand Raiden Spectrometer for the three
angular settings used. The scattering angle, as measured from the beam axis, is
shown with circles for 0.5-degree angular bins. Three rectangles represent the angular
coverage accessible when the spectrometer is rotated around its pivot point. Red:
angular acceptance for 0-degree measurements. Blue: angular acceptance for 2.5
degree measurements. Green: angular acceptance for 4-degree measurements. In
areas where two angle settings overlap, the measurement with best statistics and
most complete coverage of the angular range is used, as indicated by the numerical
label.
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Figure 4.8: Elastic scattering on 150Nd, including an ECIS fit from which the optical
potential was extracted. The fit shown was used in all FOLD calculations. See section
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a (3He,3He) elastic scattering measurement. Twenty-seven data points were taken at

angles between 8 and 21 degrees in the center of mass. The angular distribution of

the cross section was fit with the code ECIS [96] as shown in Figure 4.8, resulting in

an optical potential that will be discussed in section 4.3.2.

4.2 Calibrations

4.2.1 Sieve Slit Calibrations

Field maps that provide detailed information on distribution and strength of the

magnetic field emanating from a magnet do not exist with sufficient precision for the

elements of the Grand Raiden Spectrometer to use them for the purpose of particle

track reconstruction. However, the ability to ion-optically ray-trace particles from

the focal plane back to the target is important for any experiment. The solution

is to perform a sieve-slit measurement. A block with a distinctive hole pattern is

inserted into the beam line ∼ 60 cm behind the target and data is taken. Polynomials

dependent on xfp, yfp, and Θ
fp
horizontal

are then found to reconstruct Θtahorizontal

and Θtavertical based on the hole pattern in the sieve slit. These polynomials go up to

the 6th order. The sieve slit is then removed from the beam line and the polynomials

are used to reconstruct target angles for the rest of the data. See Figures 4.9 and

4.10 for more details on this procedure.

In this experiment, the triton energies were calibrated from known states in

24,25,26Mg. Strong states in the natMg data were matched to known values of

the excitation energy to extract a relationship between the triton energy and the dis-

persive position and angle in the focal plane, and this relationship was then applied to

the 150Nd data. A second correction accounted for the difference in recoil energy as

a function of scattering angle between the natMg and 150Nd. Differences in energy

losses for different targets were calculated using LISE++ [115] and accounted for as
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Figure 4.10: Reconstructed sieve slit spectrum after the determination of raytracing
parameters (dispersive angle vs. non-dispersive angle at the target)

well. Run-dependent shifts (due to small changes in beam parameters) in the focal

plane angles and the beam energy over the course of the experiment were monitored

and corrected for so that all of the data could be viewed at once with optimal angu-

lar and energy resolution. The energy resolution was 33 keV FWHM. The angular

resolution of the laboratory scattering angle was 0.42◦, which is based on the angular

widths of the 3He+ charge state as observed in the focal plane.

4.2.2 Beam rate Calibration and Cross Section Calculation

Beam line polarimeters (BLPs) at two stations were used to cross-check the Faraday

cups used to integrate the beam charge at different angular settings. In each BLP, two

plastic scintillator detectors at 48◦ and 17◦ were placed around a retractable 14µm

CH2 foil in the beam line. The incident beam undergoes elastic scattering on the

protons in the CH2, and this yield can then be used to cross-calibrate Faraday cups
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for the (3He,t) measurements. Three different Faraday cups were used to measure the

beam rate: the 0◦ cup was inside the D1 dipole, the 2◦ cup is by the Q1 quadrupole,

and 4◦ cup is inside the scattering chamber (see Figure 4.5). No rescaling had to be

applied. Cross sections were calculated with the equation

dσ

dΩ
=

Y

NbNtǫ1ǫ2dΩ
. (4.1)

where Y is the total number of counts in an angular bin, Nb is the number of nuclei

in the beam, Nt is the number of nuclei in the target, dΩ is the opening angle, ǫ1

corrects for the lifetime of the data acquisition system (DAQ) (which was around

96%), and ǫ2 corrects for the target purity (also 96%).

4.3 Analysis of Data

Data for the three angular settings of the Grand Raiden were merged. The laboratory

angular range of 0-5◦ was sliced into ten half-degree bins, as shown in Figure 4.7.

Figure 4.11 shows the excitation energy spectrum of 150Pm for every other angular

bin. Shape changes occur as a function of angle due to the angular distributions

of the isobaric analogue state (IAS, at 14.35 MeV), Gamow-Teller resonance (GTR,

centered at 15.25 MeV), and the spin-dipole resonance (SDR or IVSGDR, centered

at 22.8 MeV). The non-spin-flip giant resonances (IVGMR and IVGDR) are very

small and do not contribute significantly to the spectrum. The peak due to the IAS

exceeds the y-axis scale in Figure 4.11 and peaks at 0.43 mb/sr/5keV (at 0◦). A

strong, forward-peaked discrete state is visible at 0.11 MeV, and a weaker pair of

dipole states is present near 1.6 MeV (both are easier to see in Figure 4.12).
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Figure 4.11: Cross sections for the 150Nd(3He,t) experiment: every other 0.5◦-wide
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4.3.1 FOLD calculations for 150Nd(3He,t)

As described in Chapter 3, the FOLD code can be used to calculate angular distribu-

tions for charge-exchange differential cross sections. Figure 4.13 shows the five shapes

representing ∆L = 0,1,2,3, and 4. In general, ∆L+∆S=∆J. ∆L=0 strength corre-

sponds to a Fermi or Gamow-Teller transition (Jπ = 0+ or 1+ respectively) or their

2~ω overmodes (the IVGMR and IVSGMR) and peaks near 0◦. ∆L=1 is a dipole

transition, with a ∆Jπ of either 0−,1−, or 2−, and peaks around 1.5◦. ∆L=2 is a

quadrupole transition, and ∆L=3 (octupole) and ∆L=4 (hexadecapole) transitions

are also used. For a complete list of the relevant quantum numbers, refer to Table

3.1. All of the relevant Jπ transitions up through 4+ are represented by combinations

of these five shapes. For example, the Jπ=2− case is a combination of ∆L=1 and 3

with ∆S=1. Transitions with ∆L >4 are not included in the analysis, because the

angular distributions peak beyond 5◦ in the center of mass and data was taken in

the range of 0-5◦. The population of transitions with high ∆L values is reduced near

q=0, and contributions from these transitions (with ∆L>4) are effectively absorbed

into ∆L=3 and 4.

4.3.2 The Optical Potential and the IAS

As mentioned at the end of Section 4.1.1, optical potential parameters were fit to

elastic scattering data using the code ECIS [96]. The first optical potential tried

(potential 1 of Table 4.2) was an extrapolation of parameters obtained from elastic

scattering on other targets (such as 90Zr and 208Pb). This potential produced a

cross section that had a magnitude 60% higher than the IAS seen in the data. This is

consistent with what has been seen for other targets, but in this case the calculated

angular distribution for the IAS did not match the data. A second set of optical

model parameters (potential 2 in Table 4.2) was deduced from a fit to the elastic
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Figure 4.13: Angular distributions from 150Nd(3He,t) as calculated with FOLD.
Relative scaling of the distributions is arbitrary and chosen solely to better display
the function shape.
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Figure 4.14: The angular distribution of the optical potential compared to the IAS.
Table 4.2 contains the parameters for potential 2.
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Potential V r a W rw ra

1 31.79 1.34 0.83 36.4 0.94 1.28
2 58.57 1.134 1.032 66.7 1.0925 0.94

Table 4.2: Optical potentials for the elastic scattering data and the angular distri-
bution of the IAS. Potential 1 was the standard potential at the beginning of the
iterative process and fit neither the elastic scattering data or the IAS. Potential 2 was
chosen for use in DWHI calculations because it was a reasonable fit to both.

scattering data in Figure 4.8. When this potential was scaled and applied to the IAS,

the location of maxima and minima were well reproduced (see Figure 4.14). This

set of optical model parameters was used in the rest of the analysis, since the main

purpose of the calculated angular distribution is to provide input for a multipole

decomposition analysis. While the W (imaginary volume term) is unusually large in

potential 2, lower values of W could not reproduce the elastic scattering curve. This

may be because of 150Nd’s deformation, or it may be a sign that the functional form

of the optical potential should include other components, such as surface or spin-orbit

terms. Given the limited angular coverage of the elastic scattering measurement and

the absence of polarization observables, it was not possible to perform a fit to a more

complicated optical potential.

4.3.3 Multipole Decomposition Analysis

The 150Nd(3He,t) data was analyzed with two separate methods. The first method

is a multipole decomposition analysis (MDA)[116]. Since 150Pm’s level density is

high (it is a heavy odd-odd nucleus), a peak-by-peak analysis is impossible, even at

low energies. Instead, the spectrum is split up into 1 MeV bins, and the angular

distribution of the measured cross section is fit with a linear combination of the

calculated cross sections from DWBA. Angular distributions for each discernable

peak in the region of 0-2 MeV were fit in a similar fashion. In the following equation
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for a multipole decomposition, σi represents the calculated angular distribution from

Figure 4.13 for ∆L=i and the capital letters represent the fit parameters.

σtot = A ∗ σ1 +B ∗ σ2 + C ∗ σ3 +D ∗ σ4 + E ∗ σ5 (4.2)

In the 150Nd analysis, five functions were used in the multipole decomposition, rep-

resenting ∆L=0,1,2,3,and 4. Contributions from certain ∆L values were consistent

with 0 for some angular bins.

As shown in Figure 4.15 (top), transitions to the ground state peak around 1.5◦,

which implies it is dominated by dipole (∆L=1) contributions. A significant ∆L=3

contribution is also observed. Unless two states exist at energies too close to separate,

this fit indicates that the ground state may have a Jπ of 2−. Barrette et al. [117]

studied the decay of 150Pm to 150Sm and give a tentative Jπ of 1− or 1+ to this

level, but this is based entirely on arguments that no states of high spin in 150Sm

were observed to be directly fed by the 150Pm ground state decay. However, a large

number of levels from that experiment were not placed in a level scheme, and their

evidence for a J of 1 is incomplete. The MDA from the current experiment shows that

Jπ contributions of 2− or 1−+3− (in the case of two inseparable states) are possible,

but 1+ is ruled out. Since we don’t have OBTDs for individual transitions, we cannot

fully exclude the possibility that this is a 1− state with an angular distribution that

has been modified due to the influence of the Tτ interaction.

A very strong state at 0.11 MeV (see the bottom of Figure 4.15) peaks at 0 degrees

and decreases in strength at higher angles, which is a sign of a sizable ∆L=0 (GT)

component. There are ∆L=1 and 2 contributions to this angular distribution, but

it is dominated by ∆L=0 contributions. The extracted ∆L=0 cross section is 0.565

±0.085 mb/sr. The ∆L=2 contribution may be from the GT transition, and both the

∆L=1 and 2 components may be indicative of a second state at the same excitation
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Figure 4.15: Multipole decomposition of the first two single peaks in 150Pm: the
ground state and the first excited state. The differential cross section for each peak is
fitted to a linear combination of angular distributions associated with different units
of angular momentum transfer.
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Figure 4.16: Multipole decomposition of the 5-6 MeV excitation energy bin. The
∆L=0,2 components are strongest.

energy or the presence of small states nearby. Other states below 2 MeV that could

be identified were analyzed in the same fashion. They are all much weaker than the

0.11 MeV state. Some states, such as the three peaks near 1.3 MeV, can be modeled

well as ∆L=0 states, and others, such as the two peaks near 1.63 MeV, as ∆L=1

states.

After dividing the excitation energy spectrum into 1 MeV energy bins, angular

distributions were created and MDA fits were performed for the entire energy range of

the experiment (0-30 MeV). Figure 4.16 gives an example for the 5-6 MeV energy bin.

Results from the MDA for each energy bin can be combined to show the excitation

energy distribution of different types of transition strengths. Figure 4.17 shows the

results for all angles and excitation energies. The Gamow-Teller resonance peaks

around 15 MeV, along with some strength at 5 and 10 MeV, but the long tail at higher

excitation energies may come from the spin-flip giant monopole resonance (IVSGMR)
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and/or high-lying GT strength associated with coupling to 2p-2h configurations [77].

As noted in Chapter 3, the resonance centroid of the IVSGMR is expected to be

around 37 MeV. In a similar experiment on 120Sn, low-lying ∆L=0 strength was

attributed to “core polarization spin-flip” (j = l ± 1
2 → j = l ± 1

2) and “back spin

flip” (j = l − 1
2 → j = l + 1

2) [118, 119] modes. The strength at 5 and 10 MeV is

likely due to the same types of contributions. These peaks are referred to as pygmy

resonances [120, 58]. The spin-dipole resonance dominates between 1.5 and 2◦. No

resonance structures are seen (or expected) for ∆L=2,3, and 4. Giant resonances

associated with these ∆L values are expected to peak at higher excitation energies.

Information from the ∆L=3,4 distributions may represent higher multipoles as well,

as noted in Section 4.3.1.

4.3.4 Resonance fits

A second method of analyzing the 150Nd data was that of resonance fits. The goal

of this method is to completely reproduce the spectrum with a combination of (res-

onance) base functions. Many studies of nuclear giant resonances have been done in

this manner [77], and the location of some resonances (such as the IAS, GTR, and

the IVSGDR) is quite well-known. The IAS and GTR both peak around 15 MeV.

While the IVSGDR has three components (0−, 1−, and 2−), they are not distin-

guishable from one another in the data because they overlap and have the same ∆L

value and angular distribution. Instead, the summed strength peaks around 22 MeV.

The IVGDR occurs around the same excitation energy, but it is much smaller in mag-

nitude than the IVSGDR (around a factor of 1/30). To model the entire excitation

energy spectrum, one should include the GTR, IAS, IVSGDR, the fragmented GT

strength at 5 and 10 MeV, and a function for quasi-free (QF) processes.

Quasi-free charge exchange can occur when the 3He projectile interacts with a

single neutron in the target in such a way that the rest of the nucleus can be considered
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Figure 4.17: Multipole decomposition summary for each 0.5◦ angular bin. The IAS
was removed from the fit, causing the visible discontinuities around 14 MeV in ex-
citation energy, and the 16O impurity cases a second discontinuity around 16 MeV.
The GT resonance dominates the spectrum between 0-0.5◦, but rapidly diminishes
and is replaced by the IVSGDR at 1.5-2◦. Higher multipoles (or quasifree processes)
take over at higher angular bins.
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Figure 4.17: Multipole decomposition summary for each 0.5◦ angular bin. The IAS
was removed from the fit, causing the visible discontinuities around 14 MeV in ex-
citation energy, and the 16O impurity cases a second discontinuity around 16 MeV.
The GT resonance dominates the spectrum between 0-0.5◦, but rapidly diminishes
and is replaced by the IVSGDR at 1.5-2◦. Higher multipoles (or quasifree processes)
take over at higher angular bins.
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Figure 4.17: Multipole decomposition summary for each 0.5◦ angular bin. The IAS
was removed from the fit, causing the visible discontinuities around 14 MeV in ex-
citation energy, and the 16O impurity cases a second discontinuity around 16 MeV.
The GT resonance dominates the spectrum between 0-0.5◦, but rapidly diminishes
and is replaced by the IVSGDR at 1.5-2◦. Higher multipoles (or quasifree processes)
take over at higher angular bins.
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Figure 4.17: Multipole decomposition summary for each 0.5◦ angular bin. The IAS
was removed from the fit, causing the visible discontinuities around 14 MeV in ex-
citation energy, and the 16O impurity cases a second discontinuity around 16 MeV.
The GT resonance dominates the spectrum between 0-0.5◦, but rapidly diminishes
and is replaced by the IVSGDR at 1.5-2◦. Higher multipoles (or quasifree processes)
take over at higher angular bins.
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Figure 4.17: cont. Multipole decomposition summary for each half-degree angular
bin. The IAS was removed from the fit, causing the visible discontinuities around 14
MeV in excitation energy, and the 16O impurity cases a second discontinuity around
16 MeV. The GT resonance dominates the spectrum between 0-0.5◦, but rapidly
diminishes and is replaced by the IVSGDR at 1.5-2◦. Higher multipoles (or quasifree
processes) take over at higher angular bins.
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a spectator and the neutron a free particle except for its binding energy. The neutron

is transformed into a proton and “knocked out,” which requires the process to take

place only above the proton separation energy. As the energy transferred to the

residual gets higher, neutrons in deeper shells (with greater binding energy) can

be removed. Superimposing the energy of the knocked-out protons results in the

characteristic QF shape (see Figure 4.18). In this work, the QF contribution was

modeled with Erell’s [76] semi-phenomenological function

d2σ

dEdΩ
= N

1 − e[(Etgs−x−E0)/T ]

1 + [(Etgs − x− Eqf )/W ]2
(4.3)

initially developed for pion charge-exchange. This function has since been applied

to (3He,t) [118, 119] and other types of CE experiments. Three parameters are fit:

N is an overall normalization factor different for each angular bin, W represents the

Fermi motion of the nucleon within the nucleus, and T is a temperature parameter.

E0 is the energy at which the QF curve crosses the x (excitation energy) axis. The

exponential represents the effects of Pauli blocking. The remaining parameters are

described or derived from values in Table 4.3.

The GTR and IVSGDR are represented by Gaussians, because using Lorentzians

creates non-physical long tails. The IAS was modeled with a Lorentzian. In addition

to the quasi-free curve, two small Gaussian functions (G5 and G10) were added to

the fit near 5 MeV and 10 MeV to represent the pygmy GT resonances and other

low-lying strength. With these six functions, an 18-parameter fit was performed using

MINUIT [121]. Figure 4.18 shows the result for all ten angular bins.

The fit resonances were integrated for each angular bin to produce an angular

distribution. These were then decomposed into ∆L components with the functions

used in the MDA (see Figure 4.13). Comparisons between the two methods could

then be made (see Figure 4.19). As expected, the function labeled IAS was entirely
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Figure 4.18: Resonance fit to the excitation energy spectrum. The sum of the six fit
functions reproduces the original shape of the data.
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Figure 4.18: cont. Resonance fit to the excitation energy spectrum. The sum of the
six fit functions reproduces the original shape of the data.
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Figure 4.18: cont. Resonance fit to the excitation energy spectrum. The sum of the
six fit functions reproduces the original shape of the data.
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Figure 4.18: cont. Resonance fit to the excitation energy spectrum. The sum of the
six fit functions reproduces the original shape of the data.
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Figure 4.18: cont. Resonance fit to the excitation energy spectrum. The sum of the
six fit functions reproduces the original shape of the data.
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Parameter
name

Definition/Method of Calculation Value

N normalization, fit fit

Q Q value for 150Nd(3He,t) 0.105 MeV

nQ Q value for n(3He,t)p at 420 MeV 0.764 MeV

Eproj energy of the incoming 3He 420 MeV

Etfree energy of the free triton, Eproj + nQ 420.764 MeV

Etgs ground state energy of the triton, Eproj - Q 419.895 MeV

Sp proton separation energy for 150Nd 9.922 MeV
Bcoul Coulomb barrier for the proton 12 MeV
Exn excitation energy of the neutron hole state,

from [105]
2 MeV

Eqf quasi-free energy, Etfree-(Sp+Exn+Bcoul) 396.864 MeV

E0 Etgs - Sp 409.973 MeV
W width of resonance, fit fit (around 22)
T slope, fit fit (around 120)

Table 4.3: Parameters used in calculating the quasi-free curve. The values of T and
W are comparable to those found in other works [105, 76].

∆L=0, while the GTR was overwhelmingly so and the IVSGDR primarily ∆L=1.

This confirms that the resonance shapes and their locations are a good match for the

real resonances. The QF, G5, and G10 distributions also contain significant ∆L=0

and ∆L=1 strength.

4.3.5 Extrapolation to q=0

These two analysis methods, resonance fitting and multipole decomposition, result in

absolute cross sections for each type of multipole excitation for half-degree angular

bins and 1 MeV excitation energy bins (with peak-by-peak resolution below 2 MeV).

When contributions from the IAS are removed and possible contributions from the

IVSGMR at high excitation energies are ignored, the L=0 cross section and equation

3.24 can be used to extract the Gamow-Teller strength for a given transition. However,

the cross section must first be extrapolated to zero momentum transfer (q=0). Using

77



0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

data

∆L=0

∆L=2

sum

GTR

d
σ

/d
Ω

 (
m

b
/s

r)

Θcm (deg)

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

IAS

∆L=0

IAS

Θcm (deg)

d
σ

/d
Ω

 (
m

b
/s

r)

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

data

∆L=1

∆L=3

sum

IVSGDR

Θcm (deg)

d
σ

/d
Ω

 (
m

b
/s

r)

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

data
∆L=0
∆L=1
∆L=2
∆L=3
∆L=4
sum

QF

d
σ

/d
Ω

 (
m

b
/s

r)

Θcm (deg)

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

data

∆L=0

∆L=1
∆L=2

∆L=3

∆L=4

sum

G5

d
σ

/d
Ω

 (
m

b
/s

r)

Θcm (deg)

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

data

∆L=0

∆L=1

∆L=2
∆L=3

∆L=4

sum

G10

Θcm (deg)

d
σ

/d
Ω

 (
m

b
/s

r)

Figure 4.19: Angular distributions of the giant resonances. Components from con-
tributing ∆L values are included. The GTR can be reconstructed with only ∆L=0
and 2, the IAS with only ∆L=0, and the IVSGDR with only ∆L=1 and 3, because
the shapes are accurate representations of the actual resonances. The pygmy reso-
nances and the QF are much more complex (though both have significant ∆L=0,2
contributions). 78



equation 4.4,

dσ

dΩ

∣

∣

∣

∣

∣

q→0

=

[ dσ
dΩ

(θ = 0◦, Q = 0)

dσ
dΩ

(θ = 0◦, Q)

]

DWBA

×

[

dσ

dΩ
(θ = 0◦, Q)

]

experiment

(4.4)

the ratio of the DWBA cross-section to that at 0◦ is calculated and multiplied by the

experimental cross section. The ratio is shown in Figure 4.20 and is well-described

by a polynomial:

Yratio = 1.00057−0.0236Q+0.00185Q2−4.607×10−5Q3+1.297×10−6Q4, (4.5)

where Q is the Q value. Application of this ratio is straightforward for the individual

states and the multipole decomposition analysis, since the states are well defined in

their excitation energy. Giant resonance fits are spread over a much larger energy

range. A convolution of the correction ratio and resonance shape was used to extract

dσ
dΩ

∣

∣

∣

∣

∣

q→0

for each resonance.

4.3.6 Calculation of the Gamow-Teller strength

After extrapolating the experimental cross sections to q=0, the unit cross section (σ̂)

and equation 3.24 are used to calculate the B(GT). Table 4.4 shows results from the

resonance fit method. The total extracted B(GT) is 56.62 ± 6.16, including both

statistical and systematic errors. The IVSGDR and the IAS are excluded from this

calculation, because they cannot contain any GT strength, but the QF, G5, and G10

resonance shapes are included because of the large amount of L=0 strength present

and because they are composites of more than one multipole.

The MDA yields a total GT strength of 50.01 ± 1.69 (combined statistical and

systematic errors). Associated statistical errors from the fitting procedure are quite

small, but systematic errors (including contributions from the optical potential and

79



0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 5 10 15 20 25 30
Q (MeV)

dσ
/d

Ω
(θ

=
0o ,Q

=
0)

 / 
dσ

/d
Ω

(θ
=

0o ,Q
)

Figure 4.20: Ratio of the cross section at θ=0◦ and 0 linear momentum transfer to
that of 0 linear momentum transfer, as calculated in DWBA. See equation 4.5.

Resonance B(GT) B(GT) stat. error B(GT) syst. error total error

G5 2.506 0.442 0.380 0.585
G10 3.812 0.656 0.574 0.872
GTR 23.072 1.170 3.484 3.676
QF 22.706 1.326 4.055 4.349
total 56.62 2.11 5.390 5.790

Table 4.4: Gamow-Teller strengths from resonance fits. Quasi-free contributions must
be included because of the large amount of high-lying L=0 strength. (Inclusion of the
QF section also makes comparisons with the MDA method feasible.) The IVSGDR
and the IAS, by definition, do not contain GT strength. Systematic errors are taken
to be 15% of the GT strength, which is consistent with methods used in the MDA.
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Figure 4.21: GT strength from the MDA

the nucleon-nucleon interaction) are 15% as applied to each 1-MeV fit of the an-

gular distributions (systematic errors from different energy bins are assumed to be

independent of each other). Table 4.5 and Figure 4.21 give detailed values.

Directly comparing the low-lying states, the peak-by-peak analysis sums to a total

strength of 0.370 ± 0.023, while the 0-2 MeV section of the MDA sums to 0.46 ±

0.050. The two methods are barely consistent, which makes sense because the peak-

by-peak analysis is ignoring everything in between what was chosen as a peak, while

the full MDA takes those regions into account. Details are shown in Table 4.6 and

Figure 4.22.

4.3.7 Other Multipole Excitations

While GT and Fermi strengths are directly proportional to the CE cross section at

q=0, no such relationship is proven to exist for higher multipoles. MDA dipole and
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Ex.(MeV) B(GT) stat. error syst. error total error

0.5 0.2698 0.0037 0.0405 0.0406
1.5 0.1908 0.0037 0.0286 0.0289
2.5 0.2728 0.0039 0.0409 0.0411
3.5 0.3829 0.0043 0.0574 0.0576
4.5 0.4866 0.0048 0.0730 0.0731
5.5 0.5067 0.0049 0.0760 0.0762
6.5 0.5486 0.0051 0.0823 0.0824
7.5 0.6764 0.0054 0.1015 0.1016
8.5 0.9031 0.0059 0.1355 0.1356
9.5 1.1693 0.0065 0.1754 0.1755
10.5 1.4595 0.0072 0.2189 0.2190
11.5 1.7731 0.0048 0.2660 0.2660
12.5 2.2785 0.0088 0.3418 0.3419
13.5 3.2420 0.0104 0.4863 0.4864
14.5 4.5515 0.1433 0.6827 0.6976
15.5 4.4297 0.0128 0.6645 0.6646
16.5 4.1008 0.0129 0.6151 0.6153
17.5 3.2501 0.0126 0.4875 0.4877
18.5 2.5150 0.0122 0.3773 0.3774
19.5 2.0486 0.0125 0.3073 0.3075
20.5 1.7192 0.0128 0.2579 0.2582
21.5 1.5975 0.0135 0.2396 0.2400
22.5 1.4426 0.0142 0.2164 0.2169
23.5 1.3301 0.0147 0.1995 0.2001
24.5 1.3273 0.0154 0.1991 0.1997
25.5 1.3620 0.0161 0.2043 0.2049
26.5 1.3912 0.0169 0.2087 0.2094
27.5 1.4868 0.0177 0.2230 0.2237
28.5 1.5896 0.0177 0.2384 0.2392
29.5 1.7075 0.0201 0.2561 0.2569
sum 50.01 0.1563 1.68 1.69

Table 4.5: Gamow-Teller strength distribution from the MDA, 0-30 MeV
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Ex. (MeV) B(GT) stat. error syst. error total error

0.11 0.1334 0.0023 0.0202 0.0203
0.19 0.0226 0.0012 0.0034 0.0036
0.282 0.0128 0.0008 0.0019 0.0021
0.40 0.0155 0.0009 0.0023 0.0025
0.497 0.0133 0.0014 0.0020 0.0025
0.592 0.0086 0.0015 0.0013 0.0020
0.667 0.0085 0.0013 0.0013 0.0018
0.725 0.0069 0.0013 0.0010 0.0017
0.86 0.0066 0.0014 0.0010 0.0017
0.904 0.0108 0.0015 0.0016 0.0022
1.0 0.0064 0.0013 0.0010 0.0016
1.14 0.0066 0.0011 0.0010 0.0015
1.225 0.0064 0.0020 0.0010 0.0022
1.267 0.0152 0.0003 0.0023 0.0023
1.319 0.0131 0.0013 0.0020 0.0024
1.368 0.0131 0.0009 0.0020 0.0022
1.397 0.0050 0.0001 0.0008 0.0008
1.576* 0.0199 0.0021 0.0030 0.0037
1.684* 0.0181 0.0020 0.0027 0.0034
1.831 0.0219 0.0018 0.0033 0.0037
1.949 0.0041 0.0008 0.0006 0.0010
sum 0.3699 0.0065 0.0220 0.0229

Table 4.6: Gamow-Teller strength distribution from low-lying states, 0-2 MeV. Exci-
tation energies of these states come from the fit, and may be off by ± 10 keV. The
states listed with asterisks at 1.576 and 1.684 MeV are primarily dipole states.

83



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

B(GT)

E
x
 (

150
Pm) (MeV)

B
(G

T
)

Figure 4.22: Low-lying GT strength from the MDA

quadrupole cross sections (at their peak angles), respectively, are given in Tables 4.7

and 4.8 and Figures 4.23 and 4.24. Cross sections from the resonance fit method are

given in Tables 4.9 and 4.10.

Cross sections for the resonance fit method are slightly higher than for the MDA

method of analysis. This discrepancy may arise for several reasons: the shape assumed

for the quasi-free curve and other resonances may not be correct, and the resonance fit

method assigns significant ∆L=0 and 1 strength to large regions without allowing for

∆L=3 and 4 contributions. Since the assumptions used to perform the resonance fit

analysis have inherent ambiguities that are difficult to quantitatively test, the results

of the MDA will be used for the remainder of the analysis.
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Figure 4.23: Dipole cross sections from the MDA
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Figure 4.24: Quadrupole cross sections from the MDA
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Ex. (MeV) Cross Section (mb/sr) stat. error syst. error total error

0.5 0.5270 0.0174 0.0791 0.0809
1.5 0.7445 0.0224 0.1117 0.1139
2.5 0.6236 0.0153 0.0935 0.0948
3.5 0.5599 0.0108 0.0840 0.0847
4.5 0.6033 0.0095 0.0905 0.0910
5.5 0.6122 0.0093 0.0918 0.0923
6.5 0.7589 0.0120 0.1138 0.1145
7.5 0.8910 0.0148 0.1337 0.1345
8.5 1.0410 0.0188 0.1562 0.1573
9.5 1.2193 0.0226 0.1829 0.1843
10.5 1.4205 0.0262 0.2131 0.2147
11.5 1.7795 0.0322 0.2669 0.2689
12.5 2.2994 0.0409 0.3449 0.3473
13.5 3.0044 0.0501 0.4507 0.4535
14.5 4.7925 0.8003 0.7189 1.0758
15.5 5.3794 0.0759 0.8069 0.8105
16.5 6.3067 0.1084 0.9460 0.9522
17.5 7.1589 0.1029 1.0738 1.0788
18.5 7.9162 0.1175 1.1874 1.1932
19.5 8.7827 0.1268 1.3174 1.3235
20.5 9.1426 0.1233 1.3714 1.3769
21.5 9.2700 0.1180 1.3905 1.3955
22.5 8.8952 0.1046 1.3343 1.3384
23.5 8.0133 0.0994 1.2020 1.2061
24.5 7.0217 0.0864 1.0533 1.0568
25.5 5.9347 0.0758 0.8902 0.8934
26.5 4.9326 0.0685 0.7399 0.7431
27.5 4.1357 0.0600 0.6204 0.6232
28.5 3.3305 0.0509 0.4996 0.5022
29.5 2.7587 0.0469 0.4138 0.4165
sum 119.8559 0.8850 4.1514 4.2447

Table 4.7: Dipole cross sections from the MDA, 0-30 MeV, taken at the peak of the
angular distribution (1-1.5◦).
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Ex.(MeV) Cross Section (mb/sr) stat. error syst. error total error

0.5 0.3187 0.0116 0.0478 0.0492
1.5 0.3766 0.0105 0.0565 0.0575
2.5 0.4758 0.0163 0.0714 0.0732
3.5 0.6285 0.0257 0.0943 0.0977
4.5 0.8355 0.0350 0.1253 0.1301
5.5 0.9229 0.0399 0.1384 0.1441
6.5 0.9079 0.0329 0.1362 0.1401
7.5 0.8976 0.0293 0.1346 0.1378
8.5 0.856 0.0252 0.1284 0.1308
9.5 0.8916 0.0242 0.1337 0.1359
10.5 0.9631 0.0241 0.1445 0.1465
11.5 1.0426 0.0225 0.1564 0.1580
12.5 1.1673 0.0215 0.1751 0.1764
13.5 1.3769 0.0220 0.2065 0.2077
14.5 1.7089 0.2161 0.2563 0.3353
15.5 2.0772 0.0229 0.3116 0.3124
16.5 1.8104 0.0173 0.2716 0.2721
17.5 2.1822 0.0187 0.3273 0.3279
18.5 2.2443 0.0173 0.3366 0.3371
19.5 2.5682 0.0187 0.3852 0.3857
20.5 2.9635 0.0212 0.4445 0.4450
21.5 3.3910 0.0247 0.5087 0.5092
22.5 3.8348 0.0295 0.5752 0.5760
23.5 3.9978 0.0348 0.5997 0.6007
24.5 4.2886 0.0432 0.6433 0.6447
25.5 4.2716 0.0506 0.6407 0.6427
26.5 4.2687 0.0623 0.6403 0.6433
27.5 4.1340 0.0707 0.6201 0.6241
28.5 4.1184 0.0884 0.6178 0.6241
29.5 4.1496 0.1132 0.6224 0.6326
sum 63.37 0.3079 2.0938 2.1163

Table 4.8: Quadrupole cross sections, 0-30 MeV, taken at the peak of the angular
distribution (2-2.5◦).
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Resonance dσ
dΩ

(mb/sr) stat. error syst. error total error

IVSGDR 117 15 17.55 23.1
G5 3.5 0.5 0.525 0.725
G10 1.0 0.5 0.15 0.52
QF 38 10.0 5.7 11.51
sum 159.5 18.04 18.46 25.81

Table 4.9: Dipole cross sections from giant resonance fits.

Resonance dσ
dΩ

(mb/sr) stat. error syst. error total error

G5 6.5 0.75 0.975 1.23
G10 6.25 0.5 0.94 1.06
GTR 7.0 2.0 1.05 2.26
QF 68.0 8.0 10.2 12.96
sum 87.75 8.3 10.3 13.3

Table 4.10: Quadrupole cross sections from giant resonance fits.

4.4 Comparison with Theory

4.4.1 Cross sections and Giant Resonances

The extracted cross section of the IAS at 0◦ and q=0 is 9.18 ±0.25 mb/sr (see Figure

4.14 and apply Equation 4.5), and its Fermi strength is equal to (N-Z)=30. The

deduced Fermi unit cross section is 0.31 ± .01 mb/sr. This matches the value from

the phenomenological equation [95] for A=150 within 10%:

σ̂F =
72

A1.06
= 0.35 (mb/sr). (4.6)

This match between the phenomenological and measured σ̂F gives us confidence that

the phenomenological σ̂GT = 4.19 is also applicable. Based on reference [95], an error

of 10% for σ̂GT is reasonable.

Table 3.2 gives a list of pertinent giant resonances. One way to measure the ex-
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GT IVGMR IVSGMR sum

0.606 22.395 0.933 0.361

Table 4.11: Exhaustion of the full normal mode strength for ∆L=0, under the as-
sumption that each of the resonances is the only contribution to the measured L=0
strength. Data could fulfill 60% of the GT sum rule, 90% of the IVSGMR sum rule,
and over 22 times the IVGMR sum rule. When combined, 36% of the possible sum
rule strength from all resonances is seen; however, it is known that the IVGMR and
IVSGMR peak at higher excitation energies and that the GTR thus makes up the
bulk of the strength.

haustion of normal mode strength (see section 3.2.2) is to compare the measured cross

section (from the MDA) with the calculated cross section in each excitation energy

bin. For example, measured ∆L=0 strength can be attributed to a combination of

the GTR, IVGMR, and the IVSGMR (assuming the IAS is analyzed separately), al-

though very little strength is expected from the IVGMR. Since all three resonances

have the same angular distribution, they cannot be separated. The measured strength

can be compared separately to the calculated strength for each resonance and then

again to the combined resonances. (∆L=0 data is not adjusted to q=0.) Results are

shown in Tables 4.11, 4.12, and 4.13. We certainly do not expect to see very much

strength from the IVSGMR at low excitation energies, but it is feasible to see some

of it since it peaks around 37 MeV and it is very broad.

The Fermi unit cross section calculated in DWBA is 0.2025. This difference from

the experimental value of 0.31 occurs because of the large imaginary volume term in

the optical potential. Since the actual unit cross section has been measured, values

for the exhaustion of normal mode strength (Tables 4.11, 4.12, and 4.13) have been

scaled by 0.2025/0.31 = 0.66 under the assumption that it applies for all transitions

alike.
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IVSGDR0- IVSGDR1- IVSGDR2- IVGDR sum

12.048 0.761 1.148 13.495 0.427

Table 4.12: Exhaustion of normal mode strength for ∆L=1.

IVGQR IVSGQR1+ IVSGQR2+ IVSGQR3+ sum

16.467 5.213 1.638 1.629 0.677

Table 4.13: Exhaustion of normal mode strength for ∆L=2.

4.4.2 QRPA calculations

The group of Vadim Rodin at the University of Tübingen has used QRPA methods

to calculate the GT and dipole strengths in 150Pm in both the (3He,t) and (t,3He)

directions [122, 55, 123]. This research group is able to incorporate nuclear defor-

mation into their model, and will use data from this thesis to test their calculations.

Table 4.14 [122, 124] gives a list of relevant parameters. Raw calculations for three

different values of K (projection of angular momentum onto a deformed axis of sym-

metry) are shown in Figure 4.25. K is a good quantum number in deformed nuclei

(J is not). GT strength is predicted around the region of the experimental GTR, and

dipole strength is anticipated mostly at higher excitation energies (coinciding with

the expected location of the IVSGDR).

Nucleus β2 gpp gph

150Nd 0.183 1.11 1.16
150Sm 0.114 1.11 1.16

Table 4.14: Values of the deformation parameter β2 for 150Nd and 150Sm as adopted
in the QRPA calculations, along with the fitted values of the p−p strength parameter
gpp. The gph value is found by fitting the position of GT resonance [124]. Quenching

of the GT strength is taken into account when gpp is fitted.
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Figure 4.25: Raw QRPA calculations for 150Nd(3He,t). K values are as follows: black
represents K=0, red represents K=1, and blue represents K=2. Top left: unquenched
GT strength, top right: 0− dipole cross sections and strength, bottom left: 1− dipole
cross sections and strength, bottom right: 2− dipole cross sections and strength.
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To facilitate comparison with data, these calculations are smeared with Gaussians

to represent the effects of spreading not included in the calculation. For the GT

strength, the smearing widths used were 0.035 MeV (FWHM) (for the region between

0-2 MeV) or 4.7 MeV (FWHM) Gaussians (for the region above 2 MeV). The dipole

cross sections were smeared with widths of 3.5 MeV (FWHM). All smearing widths

were tuned to the data. The calculations were then put into 1 MeV excitation energy

bins. Contributions from all values of K are summed, and a GT quenching factor

of 0.56 is added to the GT distribution. This GT quenching factor is the standard

value of 0.752 [101] applied to all theoretical calculations of GT strength. Figure 4.26

shows a superposition of the calculation and 150Nd data, as well as the cumulative

(running sum) Gamow-Teller strength. The experimental ∆L=0 strength does not

drop off as much as predicted by theory at higher excitation energies, which may

indicate the presence of high-lying GTR 2p-2h strength and/or the lower tail of the

IVSGMR. The experimental GT strength in the bin between 0-1 MeV is 9 times lower

than predicted.

Figure 4.27 shows the same type of comparison for dipole states. In the absence

of a known unit cross section, experimental cross sections (between 1 and 1.5◦) and

calculated dipole strengths are superimposed. The smeared calculations for dipole

strength predict three distinct peaks rather than the one seen, suggesting that the

placement and strength of levels could be improved. This difference results in a slight

mismatch in the shape of the cumulative strength distributions.
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Figure 4.26: Gamow-Teller strength in 150Pm via 150Nd(3He,t). Data is in black
and QRPA is in red. The strength distribution and cumulative strength are shown.
Data and theory disagree at very low excitation energy, where the QRPA predicts
much more strength, and at the region between 20-30 MeV, where data sees more
strength than predicted. See text.
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Figure 4.27: Comparisons of dipole cross sections and strength in 150Pm via
150Nd(3He,t) shown for the excitation energy distribution and for a cumulative dis-
tribution. Data is in black and QRPA calculations are in color. Data shows a cross
section distribution that is smoother than predicted.
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Chapter 5

150Sm(t,3He)150Pm* at the NSCL

5.1 Experimental Setup and Procedure

5.1.1 Production of a Triton Beam

The first triton beams at the NSCL were produced from the fragmentation of a pri-

mary alpha beam. Following the coupling of the K500 and K1200 cyclotrons [125],

this was no longer the optimal method. Decoupling and recoupling the cyclotrons

to produce a primary alpha beam is associated with high overhead time, and greater

triton intensity can be achieved using 16,18O beams because less ambient neutron

radiation is produced. Hitt et al. [126] performed a systematic study of triton produc-

tion for beams of 16,18O impinging upon a range of primary Be targets, and found

that a 345 MeV/u 16O beam on 3526 mg/cm2 was the optimal method of triton

production (for triton energies over 100 MeV) within the constraints imposed by the

Bρ of the available beam lines. All subsequent triton beams have been produced this

way.

Before the 150Sm(t,3He) experiment, small geometric misalignments of analysis

line magnets were discovered and subsequently corrected. The realignment increased

triton transmission from the focal plane of the A1900 to the object of the S800 from
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around 50% to 85%. Beam purity at the beginning of the 150Sm(t,3He) experi-

ment was ∼85%. The contaminants were 6He and 9Li. A small, flat, background

was noticed in the excitation energy spectrum, and halfway through the experiment

we determined that it came from the (6He −→ 3He + 3n) breakup reaction on the

secondary target (target directly before the S800, as compared to the triton produc-

tion target). A 195 mg/cm2 wedge inserted into the A1900 removed this impurity,

producing a background-free spectrum for the second half of the experiment.

Slits in the A1900 were set at a momentum bite of ±0.25% (total 0.5%). The

analysis line of the S800 spectrometer [127] was operated in dispersion-matched mode

(see Section 4.1.1) to achieve the best resolution. In dispersion-matched mode, the

beam is dispersed over the target to match the dispersion of the spectrometer (11

cm/% dp/p). With a momentum acceptance of 0.5% in the A1900, a ∼5.5 cm tall

beam spot is created at the target. In the non-dispersive direction, the beam spot

is ∼1 cm wide. Figure 5.2 shows an image of the dispersion-matched beam on the

viewer. The Bρ of the analysis line was set to 4.8 Tm, which is close to the maximum

possible in dispersion-matched mode. The spectrometer Bρ was set to 2.3293 Tm.

Triton rates of 107 pps were achieved at the target during the experiment because

of the high triton transmission. To allow for ease in target changes, the Large Scat-

tering Chamber was installed and two remote-controlled, retractable arms placed at

the target position. One arm contained a 1 mm-thick plastic scintillator for beam

rate measurements, and the other held the 18 mg/cm2 150Sm target, a 10 mg/cm2

12CH2 target, and a viewer (piece of aluminum covered in ZnO, which fluoresces

when hit by the beam). The thickness of the 12C was chosen so that the energy

loss in the target would be close to that of the 150Sm target. Near the end of the

experiment, an 18 mg/cm2 13CH2 target [128] was installed for further calibrations

but also produced interesting physics results. Data from this 13C calibration target

was published [129] but will not be discussed here.
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Figure 5.2: A dispersion-matched triton beam image is shown incident on a ZnO
target (viewer) at the entrance to the S800 [127] spectrometer. Targets must have
dimensions of about 2.5 cm by 7.5 cm to accommodate the large beam spot.
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Figure 5.3: The 150Sm target, crafted by J. Yurkon and N. Verhanovitz. The tar-
get was sandwiched between the two halves of the frame and is shown sideways.
Dimensions are 2.5 cm by 7.5 cm.

The 12,13C targets were a full 5 cm across, but the high cost of the 150Sm material

provided sufficient motivation to reduce the width to 2.5 cm (2.0 cm was visible within

the boundaries of the frame). Creating the 150Sm target was challenging. Dr. John

Yurkon and Dr. Nate Verhanovitz produced the target. natSm was used to test two

methods of target production: rolling and evaporation. Samarium is a brittle metal,

and an attempt to roll the target failed after reaching ∼35 mg/cm2, twice the desired

thickness. The evaporation procedure causes a significant fraction of the original

material to be lost, but this method was successful. Several sequential evaporations

produced a target of half the desired thickness and twice the desired width, so this

was then folded in half to give the correct target dimensions. Figure 5.3 shows the

150Sm target near the end of the framing process. The position of the beam on

the target was a concern, so the sides of the target frame were painted with ZnO to

monitor the beam centering on the 150Sm metal. This proved to be a very helpful

technique and was applied in a subsequent (t,3He) experiment.
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Figure 5.4: Layout of the CRDCs in the focal plane of the S800 spectrometer (shown
sideways). A sample event is shown in red, relative to the central ρ of the S800. The
inset shows an electron distribution from an event as it is induced on the cathode
pads. This figure was created by J. Yurkon and modified by G.W. Hitt.

5.1.2 The S800 Focal Plane

The S800 Spectrograph contains two quadrupole and two dipole magnets, which focus

and bend the 3He residuals into the focal plane of the spectrometer. Position and

angle measurements are taken on an event-by-event basis with two Cathode Readout

Drift Chambers (CRDCs) [130] spaced at a distance of 107.3 cm (See Figure 5.4). The

x (y) coordinate is usually referred to as the dispersive (non-dispersive) coordinate.

An overview of specifications for the S800 appear in Table 5.1.

In each CRDC, the ejectiles encounter field-shaping electrodes encased in a con-

tinuously-renewed 80%/20% mixture of CF4 and C4H10. This gas mixture has a high

drift velocity, low avalanche electron spread and ages slowly [130]. Incoming 3He ions
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Parameter Value

momentum acceptance (∆p/p) 5%
energy resolution (intrinsic ∆E/E) 1/10,000
angular resolution ≤ 2 mrad
position resolution 0.5 mm (both vertical and horizontal)
horizontal magnification (x—x) 0.74
focal plane tilt 28.5◦

maximum Bρ (analysis line) 4.8 Tm
maximum Bρ (spectrograph) 4.0 Tm
maximum dipole field (spectrograph) 1.6 T
dipole bend radius 2.8 m
dipole bend angle 75◦

angular range 0 to 60◦

solid angle 20 msr
weight ∼250 tons

Table 5.1: Parameters of the S800 Spectrometer. Values are taken from references
[131], [132], [93], and [127].

ionize the gas, producing ion-electron pairs. Newly-created ions drift toward the

Frisch grid and are not recorded, but the more quickly-moving electrons drift toward

the anode wire, which is placed between two sets of cathode pads. The anode current

induces charge on the cathode pads, resulting in an electron distribution over about 8-

10 pads. A Gaussian fit (or center-of-gravity calculation) to this distribution provides

the dispersive (x) position signal. The non-dispersive (y) signal is calculated from the

electron drift time to the anode wire. Track angles are determined from the position

differences for one event between the two CRDCs. Plastic scintillators placed behind

the CRDCs measure the energy loss of the particles. The signal of one scintillator

is used as the trigger for the data acquisition system and serves as the start of the

time-of-flight measurement. The cyclotron RF signal provides the stop.
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5.2 Calibrations

5.2.1 CRDC Mask Calibrations

The drift velocity of particles going through the CRDCs must be calibrated so that

particle hit positions and angles in the non-dispersive direction can be calculated. To

accomplish this, tungsten masks with a distinctive and well-known pattern of holes

and lines are placed in front of each CRDC in turn. A target with a high CE event rate

(such as CH2) is installed. The ejectiles are steered across the focal plane during the

run. For most ejectiles, only sections of the CRDCs directly behind holes and lines will

detect the incoming particles, reproducing the mask pattern. 3He and other very light

ejectiles tend to punch through the mask. However, the particles that punch through

have a different energy loss in the scintillator and can be rejected in the analysis of

the run. The locations of the holes in the CRDC data in terms of channel number can

be matched with their actual location on the mask, giving precise (∼ 1 mm) ejectile

positions. Mask runs must be taken every few days during an experiment to account

for slight changes in the drift velocity, but in the 150Sm(t,3He) experiment very little

drift was observed. The drift can be monitored between mask runs by monitoring

positions and angles in either charge states, if present, or the reconstruction of the

recoil energy for a light target nucleus. Reactions on hydrogen impurities in the

150Sm target were used for this purpose.

5.2.2 Beam Rate Calibration

The number of 16O ions accelerated through the cyclotrons must be converted into

the number of tritons at the S800 target. A retractable plastic scintillator can count

particles at the target position, but it saturates at high beam rates (>105 tritons/s).

A Faraday cup at the end of the cyclotrons can measure absolute beam rates, and

non-intercepting probes (NIPs) in the beam line monitor beam rate and are continu-
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Parameter name Description

afp dispersive angle at the focal plane
bfp nondispersive angle at the focal plane
xfp dispersive position at the focal plane
yfp nondispersive position at the focal plane
tof(c) time of flight of the ejectile between the start sig-

nal (focal plane scintillator) and the stop signal
(cyclotron RF)

ata(c) dispersive angle at the target
bta(c) nondispersive angle at the target
yta(c) nondispersive position at the target
dta momentum deviation from the central Bρ track in

the S800, related to the total energy of the ejectile
by Eout=(dta*Eo+Eo)+me (me is the mass of the
ejectile)

e1up/down energy in the top/bottom of the first scintillator

e2up/down energy in the top/bottom of the second scintillator

Eo central energy for a particle following the S800 Bρ
track

θ scattering angle as defined from the beam axis,
calculated from the nondispersive and dispersive
angles at the target

Table 5.2: Important S800 parameters in the analysis of the 150Sm(t,3He) experi-
ment. A c placed at the end of a parameter indicates it has been corrected for a
dependency on another parameter (see section 5.2.4 for more details).

ously read during an experiment. Rate calibrations were performed every twenty-four

hours during the experiment: an attenuated beam was measured at the Faraday cup,

the NIPs, and the scintillator, and the relationships between the probes at different

attenuator settings allowed us to calculate an absolute beam rate at the target for

the entire experiment. The rate calibrations gave very consistent results and little

variation was observed.
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5.2.3 Calculation of the Excitation Energy of 150Pm

Table 5.2 defines many of the raw S800 parameters important in any experimental

analysis. Using the parameters dta, ata, and bta (see Table 5.2 for further informa-

tion), it is possible to calculate the total energy and scattering angles of the outgoing

3He nuclei on an event-by-event basis.

The ion-optical code COSY Infinity [133] is paired with accurate magnetic field

maps of the S800 to ray-trace focal parameters (from the CRDCs) to angles, the non-

dispersive position, and energy at the secondary target. COSY gives a fifth-order in-

version matrix which is used in the analysis software. The use of dispersion-matching

optimizes the energy resolution achievable from the S800. In this experiment, energy

resolution was ∼ 300 keV FWHM. Around 160 keV of that was due to the difference

in energy loss between 3He particles and tritons in the target. Using data from the

13C(t,3He) reaction, the absolute error in the excitation energy was estimated to be

50 keV.

A CE experiment in dispersion-matched mode is very sensitive to the placement,

tuning, and energy of the incoming beam, as well as changes in detector response.

Small changes in any of these can produce noticeable effects in the data that must be

corrected for on a run-by-run basis. The scintillator energy and time of flight were

corrected for correlations with the dispersive position and angle at the focal plane.

Corrections were applied to the energy loss of 3He ions in the plastic scintillator,

slight changes in the beam energy or the Bρ of the S800, the placement of the beam

on the target, and the time of flight. In addition, further corrections must be done

to minimize the effects of an imperfect ray-tracing matrix and imperfect dispersion-

matching. These corrections included making small shifts to center the dispersive

and non-dispersive angles at the target, as well as correcting the excitation energy’s

dependence on the time of flight and both the dispersive and non-dispersive angles
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Figure 5.5: A ytac spectrum is shown for all runs on the 150Sm target. The two side
peaks represent events from tritons incident on the aluminum target frame, while the
events in the center are from the 150Sm metal. While the fraction of beam particles
impinging upon the frame was small, the frame was very thick and therefore the yield
was high. Frame events were removed from the analysis.
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at the target. Once all of these corrections were done, many runs could be combined

together. Figure 5.5 shows the reconstructed non-dispersive hit position at the target

(ytac) spectrum for all runs on the 150Sm target. Events on the 150Sm are in the

center, and events from the frame are shown on the sides. Frame events were removed

with a cut on the acceptance, and the acceptance correction procedure discussed in

Section 5.2.4 was used to account for real events discarded in this manner.

The particle identification spectrum for 3He nuclei in the S800 focal plane is shown

in Figure 5.6. This plot shows the corrected energy loss in the second scintillator as

a function of the corrected time of flight. The blob at the left (coordinates (0,500)) is

3He, and the area at the lower right may be deuterons or from a background process

(such as the triton beam scattered off of the first dipole magnet chamber in the S800).

The excitation energy of the residual nucleus is found using a missing mass calcula-

tion. Parameters for this calculation are shown in Table 5.3. Using the incoming and

outgoing energy and momenta of the projectile and ejectile, one can apply the con-

servation of energy and momentum to calculate how much momentum/energy went

into exciting the residual nucleus. This is called the “missing” momentum/energy,

and the excitation energy is calculated directly from these quantities and the mass of

the residual nucleus (see the bottom two lines of Table 5.3).

Ex =
√

E2
mis − Pmis(4)2 −mr (5.1)

5.2.4 Acceptance Corrections

The function governing the acceptance of the S800 is complex; it depends on the

momentum and scattering angle of the outgoing particle as well as the hit position on

the target. Previous CE experiments were able to use only a portion of the laboratory

scattering angle available (0 to ∼3.5◦ [134]). The CE group has created a Monte-
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Figure 5.6: Final particle ID in the focal plane of the S800. 3He is in the upper left
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MM Parameters Definition

um 931.5 MeV
mn mass number
∆ mass excess
mp 3*um+∆p (mass of projectile (triton))

me 3*um+∆e (mass of ejectile (3He))
mt 150*um+∆t mass of target
mr 150*um+∆r mass of residual

Eo central energy for a particle following the S800 Bρ track
Ebeam Energy of the incoming beam in MeV
Ein Ebeam+mp+mt (total incoming energy)
Eout (dta*Eo+Eo)+me (total outgoing energy)
Emis Ein-Eout (“missing” energy)

Pf (4)
√

E2
out −m2

e (total final momentum)

Pf (1) Pf (4)*sin(atac) (dispersive component of final momen-

tum)
Pf (2) Pf (4)*sin(btac) (non-dispersive component of final mo-

mentum)
Pf (3) Pf (4)*cos(θ) (component of final momentum along the

beam axis)
Pi(1) 0 (assumed) (dispersive component of initial momen-

tum)
Pi(2) 0 (assumed) (non-dispersive component of initial mo-

mentum)
Pi(3) 1439 MeV (beam axis component of initial momentum)
Pi(4) 1439 MeV (total initial momentum)
Pmis(1) Pin(1)-Pf (1) (dispersive component of missing momen-

tum)
Pmis(2) Pin(2)-Pf (2) (non-dispersive component of missing mo-

mentum)
Pmis(3) Pin(3)-Pf (3) (beam axis component of missing momen-

tum)

Pmis(4)
√

Pmis(1)2 + Pmis(2)2 + Pmis(3)2 (total missing mo-

mentum)

mm
√

E2
mis − Pmis(4)2

Ex mm-mr

Table 5.3: Parameters used in the 150Sm(t,3He) missing mass calculation, applicable
to any target used in the experiment. This calculation is done on an event-by-event
basis, so all momentum and energy variables (except for Ebeam) refer to individual
particles.
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Carlo model of the S800’s acceptance to allow safe use of a greater angular range. The

model creates a three-dimensional acceptance matrix based on the scattering angle,

dta, and yta. When applied to an experimental event, this matrix returns a correction

factor that weights the event based on its probability of acceptance. The simulation

was successfully tested for cases where the differential cross section is known (12,13C),

and was then applied to 150Sm. Use of this acceptance weighting factor allowed us

to extend our angular range to 5◦ in the laboratory frame.

5.2.5 Background and Hydrogen Subtraction

As mentioned in Section 5.1, a small background was evident in the data during the

first half of the experiment. We eventually determined that the 6He impurity in the

triton beam was breaking up on the target, forming 3He and three neutrons. This

3He momentum distribution is very broad and overlaps with 3He particles produced

in the (t,3He) reaction. A 195 mg/cm2 thick aluminum wedge was inserted into the

intermediate image of the A1900 fragment separator halfway through the experiment

in an attempt to purify the beam. Insertion of the wedge produced a nearly pure triton

beam and removed the flat background. This background-free data set (“WW” for

“with wedge”) was then used to determine the shape of and remove background from

the rest of the data (“NW” for “no wedge”).

Excitation energy spectra were produced in 100 keV bins for the purpose of back-

ground subtraction. Bins of 300 keV (which corresponds to the energy resolution)

and 1 MeV are used in the physics analysis. Using the number of counts in the

hydrogen peak (events from the small H impurity in the 150Sm target), the WW

data was scaled to the NW data and subtracted. The resulting background shape

proved to be well-represented by a flat distribution for all angles, so the line fit was

subtracted from the NW data to produce a background-free spectrum. See Fig. 5.7

for an example. While error bars are not shown in the figure to allow for maximum

109



0

25

50

75

100

co
u

n
ts

0

20

40

0

20

40

60

0

25

50

75

100

-5 0 5 10 15 20 25
E

x
 (

150
Pm) (MeV)

a)

b)

c)

d)

Figure 5.7: Background subtraction for the 1-2◦ angular bin. a) The NW excita-

tion energy spectrum for 150Pm in 100 keV bins. b) The WW excitation energy

spectrum for 150Pm in 100 keV bins c) After scaling the WW spectrum to the NW
spectrum using the ratio of counts in the hydrogen peak, a line is fit to the subtracted
spectrum. The WW data has slightly better resolution than the NW data, so the H
peak is slightly narrower. d) The NW excitation energy spectrum after background
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Figure 5.8: Hydrogen subtraction for the 1-2◦ angular bin: the WW excitation energy
spectrum for 150Pm in 100 keV binning. The hydrogen peak is shown in blue, and
the final spectrum shown in black.
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clarity, they are calculated and carried through the whole analysis.

There was very little hydrogen contamination in the 150Sm target, but the 1H(t,3He)

cross section is large and a second subtraction procedure was necessary. For a given

scattering angle, the recoil energy of a neutron produced in this reaction is 150 times

larger than that of the 150Pm produced in the 150Sm(t,3He) reaction. As the Q-

value difference for the two reactions is only 2.67 MeV, some events from reactions

on 1H begin to bleed into the 150Sm data at angles greater than 2◦. The two sets

of data are completely separate for scattering angles below 2◦. Since the CH2 cali-

bration target contained significant amounts of H and the Q-value difference between

the 1H(t,3He) and 12C(t,3He) reactions is large (12.59 MeV), the 1H shape could be

cleanly modeled from the CH2 data. This situation was predicted when the experi-

ment was planned, and the CH2 target thickness was chosen such that the differential

energy loss between 3He and tritons was the same as that of the 150Sm target. A

double sigmoid function was found to reproduce the H shape well, and it was scaled

to and subtracted from the 150Sm data. Figure 5.8 shows the WW 1-2◦ excitation

energy spectrum before and after the hydrogen peak subtraction.

5.2.6 Calculation of the Cross Section

Differential cross sections were calculated using

dσ

dΩ
=

Y

NbNtdΩǫ1ǫ2
. (5.2)

Y is the total number of counts, Nb is the number of nuclei in the beam, Nt is the

number of nuclei in the target, dΩ is the opening angle, ǫ1 corrects for the dead time

in the data acquisition system (96.7% live time), and ǫ2 corrects for the purity of the

150Sm target (96%).

Figures 5.9 and 5.10 show the cross sections for all five angular bins in 300 keV
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Figure 5.9: Cross sections for 150Sm(t,3He)150Pm from 0-26 MeV, in 300 keV bins.
Data is grouped into 1◦ angular bins: 0-1◦ in black, 1-2◦ in red, 2-3◦ in green, 3-4◦

in dark blue, and 4-5◦ in light blue.

and 1 MeV excitation energy binning. Individual states are not visible. Unlike

experiments in the (3He,t) direction, experiments in the (t,3He) direction experience

strong Pauli blocking (for N≫Z), so much less GT strength is expected and GT

transitions are not obviously present in the spectrum. Similarly, the IVSGDR strength

is also reduced. The centroid of the IVSGMR is predicted to be around 15 MeV (see

equation 3.29) and should contribute to the spectrum, particularly at small scattering

angles. See Figure 3.8.
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Figure 5.10: Cross sections for 150Sm(t,3He)150Pm from 0-26 MeV, in 1 MeV bins.
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5.3 Data Analysis

5.3.1 FOLD calculations

The FOLD code was introduced in Chapter 3. Calculated angular distributions for

various multipole transitions in the 150Sm(t,3He) reaction are shown in Figures 5.11

and 5.12, where an arbitrary scale factor is applied to make each function easier to see.

Except for the ∆L=0 curve, shapes of the angular distributions change significantly as

the excitation energy increases. This was not the case for the 150Nd(3He,t) reaction.

Although this phenomenon is still under investigation outside the scope of this thesis,

it is believed to be due to the effects of the Coulomb force in the reaction process.

As the incoming projectile approaches the target, it is decelerated by the repul-

sive Coulomb force between the projectile and target. After the reaction, the ejectile

is accelerated by the Coulomb force between the ejectile and target/residual. The

“effective” linear momentum transfer (qeff ) is defined as the difference in linear

momentum between the projectile and ejectile at the interaction point, whereas the

“asymptotic” linear momentum transfer (qasy) is the difference in the calculated

linear momentum transfer between the projectile and ejectile far away from the in-

teraction point. If we ignore the effect of the Coulomb force, qeff equals qasy and

should increase with the Q-value of the reaction in a similar fashion for experiments

in both the (t,3He) and (3He,t) directions. Accounting for the Coulomb force causes

qeff <qasy in the (3He,t) direction and qeff >qasy in the (t,3He) direction. The

larger qeff for the (t,3He) reaction results in stronger contributions from amplitudes

with ∆L>0. This leads to significant changes in angular distributions, as shown in

Figures 5.11 and 5.12.

Collection of data for the 150Sm(t,t’) optical potential was not possible for two

reasons: the S800 cannot bend 345-MeV tritons, and a measurement with the rela-

tively low beam intensity (compared to a primary beam) would require a very long
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Figure 5.11: Angular distributions from 150Sm(t,3He) as calculated with FOLD, at
Q=0. Relative scaling of the distributions is arbitrary and chosen solely to better
display the function shape.
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Figure 5.12: Angular distributions from 150Sm(t,3He) as calculated with FOLD, at
Q=20. Relative scaling of the distributions is arbitrary and chosen solely to bet-
ter display the function shape, which have changed significantly for ∆L=1,2,and 4
compared to Figure 5.11.
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beamtime to gain enough statistics. Therefore, the optical potential parameters de-

duced from the 150Nd(3He,3He) elastic scattering measurement were adapted for the

present analysis as well (see Sections 3.2.5 and 4.3.2).

5.3.2 Multipole Decomposition

The level density of 150Pm is expected to be quite high, because it is a heavy odd-odd

nucleus. This was evident even in the high-resolution 150Ne(3He,t) data, where only

some individual levels could be discerned at low excitation energy. Because of this

high level density and the energy resolution of 300 keV FWHM, we cannot resolve any

individual peaks in the 150Sm(t,3He)150Pm excitation energy spectrum. Instead, the

angular distributions of the data were created from each bin (0-26 MeV in excitation

energy) of Figure 5.10 and the first 20 bins (0-6 MeV in excitation energy) of Figure

5.9 and multipole contributions were decomposed using the FOLD calculations. A

linear combination of multipole shapes was fit to each angular distribution in each

bin [116] with the equation

σtot = A ∗ σ1 +B ∗ σ2 + C ∗ σ3 +D ∗ σ4. (5.3)

The best fit results were obtained using ∆L=0,1,2, and 4 as shown in Figures

5.11 and 5.12. ∆L=3 was left out because the limited statistics allowed for the use of

only five angular bins in this experiment. Contributions from ∆L=3 are effectively

absorbed into contributions from ∆L=2 and ∆L=4.

Figure 5.13 shows the MDA fit for the 0-1 MeV excitation energy bin. ∆L=1

strength dominates, but there is also considerable strength associated with ∆L=0

and 2. In contrast, Figure 5.14 shows the 20-21 MeV excitation energy bin. ∆L=4

strength dominates here, ∆L=1 strength is completely absent, and only small amounts

of ∆L=0 and 2 strength appear. Many of the fits in this higher excitation energy
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Figure 5.13: MDA for the 0-1 MeV excitation energy bin.

region are similar. Because of the previously-mentioned limitations in the MDA, it is

likely that this ∆L=4 strength represents a combination of strength with ∆L≥3.

Low-lying states are of particular interest for 2νββ decay. Since a strong GT state

was seen around 0.11 MeV in the 150Nd(3He,t) experiment, this region was closely

examined for evidence of population through 150Sm(t,3He) as well. Figure 5.15 shows

the angular distribution for the region between 0-300 keV. The ∆L=0 cross section

at 0◦ is 0.08 mb/sr ± 0.05 mb/sr. However, this error bar can be improved upon.

If the region between 100 and 200 keV (which is expected to include most of the 1+

strength) is examined, the ∆L=4 component is consistent with zero. This is shown in

Figure 5.16. The cross section associated with ∆L=0 in the 100-keV bin (0.08 ± 0.03

mb/sr) at 0◦ is consistent with that in the 300-keV bin. Due to the limited energy

resolution, some ∆L=0 strength should appear in the bins immediately below and

above the 100-200 keV bin, but the extracted ∆L=0 cross sections at 0◦ are 0.018
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Figure 5.14: MDA for the 20-31 MeV excitation energy bin.

+0.02
−0.018 mb/sr (below) and 0.012 +0.016

−0.012 mb/sr (above), and both are consistent with

zero. Given our uncertainty in the absolute energy calibration of 50 keV and the

fact that no other 1+ states appear within that error margin in the 150Nd(3He,t)

data, we conclude that the GT strength associated with the 100-200 keV bin in the

150Sm(t,3He) data is likely associated with the 110 keV state in 150Nd(3He,t) data.

However, the possibility that the two transitions do not represent the same state in

150Pm cannot be completely excluded.

Figures 5.17 and 5.18 show the assignment of multipole strength deduced from the

MDA for the full spectrum and the lower-lying states, respectively. ∆L=0 strength

is seen in several areas (0.85 MeV, 2.25 MeV, 5 MeV, and 5.5 MeV). The strength

in the 100-200 keV region does not stand out with these large bin sizes. For the

full spectrum, quite a bit of ∆L=0 and 2 (which may include contributions from

∆L=3) strength appears to peak between 10-12 MeV, and ∆L=1 strength dominates
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Figure 5.15: MDA for the 0-0.3 MeV excitation energy bin. The ∆L=0 angular
distribution at 0◦ has a cross section of 0.08 mb/sr ± 0.05 mb/sr. The significant

∆L=1 cross section may correspond in part to population of the 150Pm ground state,
which is shown to be a dipole transition in the 150Nd(3He,t) data.
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Figure 5.16: MDA for the 0.1-0.2 MeV excitation energy bin. The ∆L=0 angular
distribution at 0◦ has a cross section of 0.08 mb/sr ± 0.03 mb/sr. ∆L=0 strength is
enhanced in this bin and can be extracted with a smaller error than in a fit to the
300 keV bin.
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in lower regions. ∆L=4 strength (including contributions from ∆L=3, 5, and higher

multipoles) makes up an increasing amount of the spectrum as the excitation energy

increases.

5.3.3 Extrapolation to q=0

Absolute ∆L=0 cross sections from the MDA must be extrapolated to q=0 (zero

asymptotic linear momentum transfer) with equation 4.4 before they can be used

to calculate GT strengths. A fourth-order polynomial describes this ratio, which is

shown in Figure 5.19 and Equation 5.4.

Yratio = 1.00946+0.01039Q+0.00857Q2−4.082×10−4Q3+1.843×10−5Q4 (5.4)

The effective linear momentum transfer qeff is different from the asymptotic lin-

ear momentum transfer qasy for the (t,3He) and (3He,t) directions, as discussed in

Section 5.3.1. This difference is reflected in Figures 5.19 and 4.20.

5.3.4 Calculation of the Gamow-Teller strength

Once the cross section has been extrapolated to q=0, the B(GT) can be extracted

with Equation 3.24 using the phenomenological unit cross section [100]. Table 5.4

and Figure 5.20 show the results for 1 MeV bins up through 26 MeV in excitation

energy, and Table 5.5 and Figure 5.21 show results for 300 keV bins for 0-6 MeV in

excitation energy. Statistical/fitting errors are dominant in both choices of binning.

Systematic errors in the extracted cross sections are estimated to be 15% and are

due to uncertainties in the optical model potential and the phenomenological unit

cross section. A large amount of ∆L=0 strength is seen over the region of 5-20 MeV.

Between 0-6 MeV, bins centered at 0.15, 0.75, 1.0, and 2.25 MeV show evidence of GT

strength. While all of the ∆L=0 strength is assumed to be GT for the purposes of this

123



0

1

2

3

4

5

6

7

0 5 10 15 20 25

data
1+
1-
2+
4+
sum

0-1 deg

E x (
150Pm) (MeV)

d
2 σ

/d
Ω

d
E

 (
m

b
/s

r 
1

 M
e

V
)

0

1

2

3

4

5

6

7

0 5 10 15 20 25

data
1+
1-
2+
4+
sum

1-2 deg

d
2 σ

/d
Ω

d
E

 (
m

b
/s

r 
1

 M
e

V
)

E x (
150Pm) (MeV)

Figure 5.17: Multipole decomposition summary for each angular bin. Higher mul-
tipoles (or quasifree processes) take over at the highest excitation energies, as was
discussed earlier in this section. Sizable cross sections associated with ∆L=0 and 2
are centered around 10-12 MeV, and a smaller amount of ∆L=1 cross sections are
centered between 0-10 MeV.
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Figure 5.17: cont. Multipole decomposition summary for each angular bin. Higher
multipoles (or quasifree processes) take over at the highest excitation energies, as was
discussed earlier in this section. Sizable cross sections associated with ∆L=0 and 2
are centered around 10-12 MeV, and a smaller amount of ∆L=1 cross sections are
centered between 0-10 MeV.
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Figure 5.17: cont. Multipole decomposition summary for each angular bin. Higher
multipoles (or quasifree processes) take over at the highest excitation energies, as was
discussed earlier in this section. Sizable cross sections associated with ∆L=0 and 2
are centered around 10-12 MeV, and a smaller amount of ∆L=1 cross sections are
centered between 0-10 MeV.
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Figure 5.18: Multipole decomposition summary for each angular bin (0-6 MeV). Cross
section peaks associated with ∆L=0 are visible in the 0-1◦ plot.
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Figure 5.18: cont. Multipole decomposition summary for each angular bin (0-6 MeV).
Cross section peaks associated with ∆L=0 are visible in the 0-1◦ plot.
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Figure 5.18: cont. Multipole decomposition summary for each angular bin (0-6 MeV).
Cross section peaks associated with ∆L=0 are visible in the 0-1◦ plot.

calculation, the IVSGMR (which peaks around 15 MeV) is expected to contribute.

The IVSGMR is expected to be very broad (∼10 MeV) and cannot be separated

from GT transitions by its angular distribution. It should be a smooth function of

the excitation energy, so any isolated low-lying states likely stem from GT transitions.

The magnitude of the extracted ∆L=0 cross section in terms of the IVSGMR will be

further discussed in section 5.4.

5.3.5 Other Multipole Excitations

Since 150Nd → 150Sm 0νββ decays can be described as going through virtual states

in 150Pm of any Jπ and excitation energy, it is helpful to extract the strength distri-

butions for dipole and quadrupole transitions. Dipole contributions, which peak at

1-2◦, are clustered between 0-10 MeV, with the largest cross sections present between

1 and 4 MeV. Figure 5.22 and Table 5.6 contain dipole cross sections. Quadrupole

cross sections (the cross sections in the 0-1◦ bin are displayed) form a diffuse area
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Figure 5.19: Ratio of the cross section at θ=0◦ and 0 linear momentum transfer to
that of 0 linear momentum transfer, as calculated in DWBA. At a Q of 25 MeV, the
effective momentum transfer q is 0.3.
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Ex.(MeV) B(GT)* stat. error syst. error total error

0.5 0.1052 0.0278 0.0158 0.0320
1.5 0.0613 0.0282 0.0092 0.0297
2.5 0.0952 0.0334 0.0143 0.0363
3.5 0.0921 0.0334 0.0138 0.0361
4.5 0.1592 0.0404 0.0239 0.0469
5.5 0.2381 0.0541 0.0357 0.0648
6.5 0.2542 0.0702 0.0381 0.0799
7.5 0.4252 0.0864 0.0638 0.1074
8.5 0.4303 0.1014 0.0645 0.1202
9.5 0.5872 0.1182 0.0881 0.1474
10.5 0.7088 0.1293 0.1063 0.1674
11.5 0.706 0.1524 0.1059 0.1856
12.5 0.753 0.1683 0.1130 0.2027
13.5 1.0289 0.1943 0.1543 0.2481
14.5 1.0186 0.2142 0.1528 0.2631
15.5 0.7394 0.2246 0.1109 0.2505
16.5 1.1134 0.2563 0.1670 0.3059
17.5 1.1147 0.2845 0.1672 0.3300
18.5 0.645 0.4275 0.0968 0.4383
19.5 0.8295 0.3441 0.1244 0.3659
20.5 1.2223 0.4138 0.1833 0.4526
21.5 0.4127 0.6374 0.0619 0.6404
22.5 0.73 0.4694 0.1095 0.4820
23.5 0.2313 0.2377 0.0347 0.2402
24.5 0.9893 0.5002 0.1484 0.5217
25.5 0.6728 0.5167 0.1009 0.5265
sum 15.3637 1.4376 0.5275 1.5313

Table 5.4: Gamow-Teller strength distributions have been extracted for excitation
energies of 0-26 MeV. See Figure 5.20. The seemingly large scatter and large error
bars at higher excitation energies are due to the q=0 correction factor, which sharply
increases in this region and magnifies the statistical error. *The entire ∆L=0 cross
section is assumed to be GT strength here, but most of the strength is expected to
actually represent IVSGMR strength.
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Figure 5.20: Extracted GT strength distributions are shown in the region of 0-26 MeV.
Low-lying strength is seen between 0-1 MeV, and higher-lying strength is dispersed
between 5 and 20 MeV. The entire ∆L=0 cross section is assumed to be GT strength
here, but most may be contributions from the IVSGMR resonance. See Table 5.4 for
the same information in tabular form. Some values are consistent with zero.
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Ex.(MeV) B(GT) stat. error syst. error total error

0.15 0.0165 0.009 0.0025 0.0093
0.45 0.0153 0.0114 0.0023 0.0116
0.75 0.0505 0.0126 0.0076 0.0147
1.05 0.0414 0.0127 0.0062 0.0141
1.35 0.005 0.0109 0.0008 0.0109
1.65 0.0162 0.0118 0.0024 0.0120
1.95 0.0159 0.0118 0.0024 0.0120
2.25 0.0709 0.016 0.0106 0.0192
2.55 0.0102 0.0128 0.0015 0.0129
2.85 0.0057 0.0127 0.0009 0.0127
3.15 0.0238 0.0138 0.0036 0.0143
3.45 0.0323 0.0136 0.0048 0.0144
3.75 0.0318 0.0142 0.0048 0.0150
4.05 0.0284 0.0137 0.0043 0.0143
4.35 0.0208 0.0143 0.0031 0.0146
4.65 0.0443 0.0171 0.0066 0.0183
4.95 0.0801 0.0207 0.0120 0.0239
5.25 0.0457 0.0186 0.0069 0.0198
5.55 0.1152 0.025 0.0173 0.0304
5.85 0.054 0.0239 0.0081 0.0252
sum 0.724 0.0689 0.0304 0.0753

Table 5.5: Gamow-Teller strength distributions are shown for the region of 0-6 MeV
(300 keV bins). See Figure 5.21. Even at these low excitation energies, the tail of the
IVSGMR resonance may contribute to the extracted GT strength.
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Figure 5.21: Extracted GT strength is shown for the region between 0-6 MeV. See
Table 5.5 for the same information in tabular form. Some values are consistent with
zero, and the tail of the IVSGMR is expected to contribute to the strength. However,
isolated strength below 3 MeV is unlikely to be due to the IVSGMR.
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Figure 5.22: Extracted ∆L=1 cross sections are shown from 0-26 MeV (at 1-2◦).
Some values are consistent with zero.

of strength between 5 and 17 MeV, as shown in Figure 5.23 and Table 5.7. The

quadrupole distribution is similar to the ∆L=0 distribution, and could be indicative

of an IVSGQR. In fact, the strength distribution of the IVSGQR and IVSGMR are

expected to peak at nearly the same excitation energies and have similar widths [135].

However, the possible contributions from ∆L=3 strength in the extracted ∆L=2 cross

section make it hard to draw strong conclusions on the magnitude of the IVSGQR.
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Ex.(MeV) Cross Section (mb/sr) stat. error syst. error total error

0.5 0.8164 0.1253 0.1225 0.1752
1.5 1.1871 0.1550 0.1781 0.2361
2.5 1.1149 0.1714 0.1672 0.2395
3.5 0.972 0.1718 0.1458 0.2253
4.5 0.9144 0.1878 0.1372 0.2326
5.5 0.9132 0.2364 0.1370 0.2732
6.5 0.9105 0.2906 0.1366 0.3211
7.5 0.7922 0.3474 0.1188 0.3672
8.5 0.6780 0.3951 0.1017 0.4080
9.5 0.5583 0.4266 0.0837 0.4347
10.5 0.5539 0.4798 0.0831 0.4869
11.5 0.5935 0.5589 0.0890 0.5659
12.5 0.1767 0.5961 0.0265 0.5967
13.5 0.0833 0.6601 0.0125 0.6602
14.5 0.0819 0.7266 0.0123 0.7267
15.5 0.1615 0.7891 0.0242 0.7895
16.5 0.0008 0.5950 0.0001 0.5950
17.5 0.0071 0.6816 0.0011 0.6816
18.5 0.1672 0.3824 0.0251 0.3832
19.5 0.0059 0.8209 0.0009 0.8209
20.5 0.0054 0.8322 0.0008 0.8322
21.5 0.2734 1.0079 0.0410 1.0087
22.5 0.3811 0.7648 0.0572 0.7669
23.5 0.4834 0.6850 0.0725 0.6888
24.5 0.0034 0.9344 0.0005 0.9344
25.5 0.0030 0.2206 0.0005 0.2206
sum 11.8385 2.9224 0.4592 2.8582

Table 5.6: ∆L=1 cross sections are shown from 0-26 MeV (at 1-2◦).
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Ex.(MeV) Cross Section (mb/sr) stat. error syst. error total error

0.5 0.3995 0.1533 0.0599 0.1646
1.5 0.3796 0.1662 0.0569 0.1757
2.5 0.4927 0.1848 0.0739 0.1990
3.5 0.4516 0.1886 0.0677 0.2004
4.5 0.4664 0.2140 0.0700 0.2251
5.5 0.7456 0.2611 0.1118 0.2840
6.5 1.1218 0.3146 0.1683 0.3568
7.5 1.3661 0.3699 0.2049 0.4229
8.5 1.5730 0.4035 0.2360 0.4674
9.5 1.5728 0.4403 0.2359 0.4995
10.5 1.4995 0.5018 0.2249 0.5499
11.5 1.5064 0.5874 0.2260 0.6294
12.5 1.7716 0.6251 0.2657 0.6792
13.5 1.5544 0.6808 0.2332 0.7196
14.5 1.3727 0.7700 0.2059 0.7971
15.5 1.2286 0.8376 0.1843 0.8576
16.5 1.2695 0.3209 0.1904 0.3731
17.5 0.9608 0.3267 0.1441 0.3571
18.5 0.8545 0.7063 0.1282 0.7178
19.5 0.6068 0.3972 0.0910 0.4075
20.5 0.5803 0.6267 0.0870 0.6327
21.5 0.2184 0.3726 0.0328 0.3740
22.5 0.0243 0.5938 0.0036 0.5938
23.5 0.0083 0.4641 0.0012 0.4641
24.5 0.0005 0.4770 0.0001 0.4770
25.5 0.0005 0.1972 0.0001 0.1972
sum 22.0262 2.4094 0.7806 2.5327

Table 5.7: ∆L=2 cross sections are shown from 0-26 MeV (at 0-1◦). A portion of
the cross section is likely due to ∆L=3 contributions, which were not accounted for
in the MDA.
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Figure 5.23: Extracted ∆L=2 cross sections are shown from 0-26 MeV (at 0-1◦).
Some values are consistent with zero. A portion of the cross section is likely due to
∆L=3 contributions, which were not accounted for in the MDA.
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5.4 Comparison with Theory

5.4.1 ∆L=0 Cross sections and the IVSGMR

Very little GT strength is expected to be observed in the 150Sm(t,3He) reaction due

to the effects of Pauli blocking. According to the QRPA calculations discussed in

Section 5.4.2, the total GT strength should be 0.5. However, if we assume that all of

the extracted ∆L=0 strength from the data can be attributed to GT transitions, the

total strength is 15.4 ± 1.5. This is unrealistically high, especially when compared

with similar (n,p)-type -experiments [82, 136, 137, 138, 139]. The largest extracted

GT strength in the (n,p) direction over a comparable energy range (30 MeV) was 6

[139] for the case of 116Sn(n,p), and Pauli blocking is stronger for 150Sm than 116Sn.

Most references claim summed B(GT) values of 1-3.

Transitions due to the IVSGMR have similar angular distributions to GT transi-

tions and the two can’t be experimentally distinguished from each other. The centroid

of the IVSGMR was roughly predicted to be 15 MeV in Section 3.3, with a width of

around 10 MeV [135]. Since this roughly matches the observed ∆L=0 distribution,

the data strongly suggest that the bulk of the observed ∆L=0 strength is due to the

excitation of the IVSGMR. To test this idea, the total IVSGMR cross section was

calculated in DWBA using OBTDs from NORMOD and compared with the DWBA

differential cross section per unit of B(GT) for GT transitions. The extracted B(GT)

from the data corresponds to about 40% of the normal mode strength of the IVS-

GMR, assuming that all experimental ∆L=0 strength is attributed to the IVSGMR

and that there is a proportionality between the IVSGMR cross section and IVSGMR

strength. Although the uncertainties in this simple calculation are large, it shows that

the extracted ∆L=0 strength is indeed likely due to the excitation of the IVSGMR.
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5.4.2 QRPA calculations

QRPA calculations for the GT and dipole strength distributions in 150Sm(t,3He)

have been provided by Vadim Rodin’s group to complement the calculations for

150Nd(3He,t). These calculations include the effect of deformation. Table 4.14 in

Chapter 4 lists important parameters used in the reaction calculations.

Individual states for the B(GT) and dipole transitions (Jπ=0−,1−,2−) are shown

in Figure 5.24. The calculations incorporate three different values of K, which is a

good quantum number in a deformed nucleus (J is not), and the three colors corre-

spond to these three values of K. In the plot of B(GT), the GT strength has not yet

been quenched.

The calculations are smeared to represent spreading in the strength distribution,

which is not accounted for in the QRPA, and put into 1 MeV bins. Below 4 MeV,

the GT calculations were smeared with the experimental resolution and re-binned

into 1-MeV-wide bins. Above 4 MeV, the calculations were smeared with Gaussians

(FWHM = 4.7 MeV) so that the width of the GTR excited via the 150Nd(3He,t)

reaction roughly matches the data. The dipole smearing widths (FWHM = 3.5 MeV)

were chosen to match those used for the 150Nd(3He,t) data. Figure 5.25 shows

the distribution and cumulative B(GT) strength. Figure 5.25 compares all of the

experimental ∆L=0 strength to the GT strength distribution from QRPA. Because

of reasons discussed in Section 5.4.1, no conclusions can be drawn about the validity

of the QRPA calculations in terms of the total GT strength found, since most of the

∆L=0 strength found is likely due to the IVSGMR. It is notable that the summed

B(GT) strength predicted in the 0-1 MeV energy bin does match the data, but a

single strong GT transition predicted in QRPA was not seen in the data.

Figure 5.26 compares the distribution and cumulative dipole cross section for the

data and QRPA. As no proportionality between cross section and dipole strength has
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Figure 5.24: Raw QRPA calculations for 150Sm(t,3He). Top left: GT strength, top
right: 0− dipole cross sections and strength, bottom left: 1− dipole cross sections
and strength, bottom right: 2− dipole cross sections and strength. The three colors
represent three different values for K: black represents K=0, red represents K=1, and
blue represents K=2. No quenching has (yet) been applied to the calculations of GT
strength.
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been established, we can only compare the shapes of cross section distribution from

data with that of the calculated strength distribution.

While the dipole cross section is correctly predicted to exist entirely below 15 MeV

in excitation energy, the experimental and theoretical distributions are somewhat

different. The total QRPA strength distribution consists of two overlapping bumps:

a small bump near 3.5 MeV and a larger one around 8.5 MeV. Dipole distributions

from the data show a large bump around 2 MeV and a smaller bump around 7 MeV.
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Figure 5.25: Extracted Gamow-Teller strength in 150Pm via 150Sm(t,3He) compared
with QRPA calculations. Data is shown in black, QRPA calculations in red, and in
the top plot the QRPA is scaled by a factor of 30. The excess strength seen in data
is attributed to the population of the IVSGMR resonance.
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Figure 5.26: Extracted dipole cross sections in 150Pm via 150Sm(t,3He) compared
with QRPA calculations.
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Chapter 6

Application to 2νββ decay

6.1 Low-lying states and the SSD hypothesis

Charge-exchange experiments can provide constraints for theory calculations aimed

at modeling ββ decay processes. Both experiments discussed in this thesis populated

states in 150Pm. A 2νββ decay transition, under the single-state dominance hypoth-

esis (SSD) [37], is governed by a virtual two-step transition connecting the initial and

final ground states through the first 1+ state in the intermediate odd-odd nucleus.

All of the 2νββ decay strength is assumed to travel through this state and other inter-

mediate states can be ignored. If the SSD hypothesis is not used, contributions from

the intermediate states in Equation 2.6 can add either constructively or destructively,

and these phases must be accounted for within the calculation.

The low-lying state in 150Pm as populated from 150Nd is centered at 0.11 MeV in

excitation energy and has a B(GT) of 0.1334 ± 0.0213 associated with it. A combina-

tion of high level density and poorer resolution hindered our ability to distinguish the

population of this state in the 150Sm(t,3He) direction. However, a small amount of

GT strength (0.0195 ± 0.0071) has been associated with the 0-300 keV region and ap-

pears to peak between 0.1-0.2 MeV. It is reasonable to assume that this GT strength
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is due to the population of the 0.11 MeV state in 150Nd(3He,t) (given the 50-keV

systematic error in the excitation energy in the 150Sm(t,3He) data). However, there

is also some GT strength located at 0.19 MeV in the 150Nd data, and the effect of a

possible overlap of this state with the 150Sm data must be checked with theoretical

techniques. The 2νββ decay half life will be calculated here under the SSD with the

assumption that the strength between 100-200 keV in the 150Sm(t,3He) data matches

the 0.11 MeV state in the 150Nd(3He,t) data.

Figure 6.1 shows low-lying GT strength in 150Pm from both directions. It is

difficult to draw many conclusions here because of 150Pm’s high level density, the

50-keV uncertainty in the energy calibration for the 150Sm(t,3He) data, and the

differences in excitation energy bins between the two experiments. In other, similar

analyses [67, 138], GT strengths have been superimposed over a much larger energy

range, but since much of the “GT” strength in the (t,3He) direction is likely from the

IVSGMR, this would not be appropriate in this situation.

6.2 Calculating the 2νββ decay half life in the SSD

Four quantities are needed to calculate the 2νββ decay half-life: the phase space

factor G2ν , a sum of several energies (the denominator of Equation 2.6), and the

extracted B(GT)s for the 0.11 MeV state from the 150Sm(t,3He) and 150Nd(3He,t)

experiments. The phase space factor of 1.2 ×10−16 was taken from [30]. The en-

ergy denominator includes the Q-value for ββ decay, the excitation energy of the

intermediate state, and the energy difference between the ground states of the initial

and intermediate nuclei. These values are 3.3677 MeV, 0.11 MeV, and 0.024 MeV

respectively. The double GT nuclear matrix element is then 0.029 ± 0.006 and the

2νββ decay half life is 10.0 ± 3.7 ×1018 years (see Table 6.1).

The currently recommended value of 8.2 ± 0.9 ×1018 years from Barabash [12]
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Figure 6.1: B(GT) strength in 150Pm at low energies from both experiments. Note

that binning is different for the two experiments: the points from 150Nd are from a
peak-by-peak analysis, while the 150Sm data have been put into 300 keV bins.

B(GT) from 150Sm B(GT) from 150Nd M2ν T1/2 (y)

0.0194± 0.0070 0.1344 ± 0.0203 0.0289±0.0056 10.0 ±3.7 ×1018

Table 6.1: Calculation of the 2νββ decay matrix element assuming single-state dom-
inance. The energy denominator of Equation 2.6 is calculated to be 1.77 MeV and is
discussed in the text.
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is consistent with our result, as is the recommended value from NNDC of 7.9±0.7

×1018 years [140]. The error in the extracted half-life from the CE data (assuming

the SSD hypothesis) would be significantly reduced if the error in the 150Sm→150Pm

B(GT) could be decreased. This would require a high-rate, high-resolution (n,p)-type

CE experiment and could benefit by the addition of γ-ray detectors for coincidence

measurements so that the excitation of the 110-keV state can be unambiguously

observed.

We can conclude from our measurements that the SSD hypothesis is a plausible

explanation for the 2νββ decay half life of 150Nd. However, it is important to note

that the transition seen in the 100-200 keV bin in the 150Sm(t,3He) data may not be

the 110 keV state seen in the 150Nd(3He,t) data, because of the 50-keV systematic

uncertainty in the 150Sm(t,3He) excitation energy and the existence of a small state

seen at 190 keV in the 150Nd(3He,t) data. In this case the SSD hypothesis cannot

be applied. Furthermore, the possibility of many higher-lying states contributing

constructively or destructively to the half life cannot be ruled out. Future theoretical

work, such as that by V. Rodin presented in the previous chapters, will hopefully

provide further insights.
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Chapter 7

Conclusions and Outlook

Charge-exchange reactions are an effective tool to probe the two branches of a double

beta decay transition. The 150Nd(3He,t)150Pm and 150Sm(t,3He)150Pm reactions

have been used to populate states in 150Pm, the intermediate nucleus in the decay of

150Nd to 150Sm. Doing the experiment at intermediate energies (over 100 MeV/u)

allowed for the extraction of the GT strength distribution as well as cross sections for

dipole and quadrupole transitions. Comparing the exact location of states between

the two experiments is very difficult in this work because of the high level density

in 150Pm and the differences in energy resolution, but the results are important for

constraining theoretical models of both the 2νββ and 0νββ decays of 150Nd. Tables

and figures of the extracted GT strength distributions and dipole and quadrupole

cross section distributions in 150Pm have been presented for excitation energy ranges

of 0-30 MeV from the 150Nd target and 0-26 MeV from the 150Sm target.

A strong GT state with low excitation energy has been identified in the 150Nd(3He,t)

experiment, and a small amount of strength is seen in the same location in the

150Sm(t,3He) experiment. If the single-state dominance hypothesis is applied, the

resulting 2νββ decay half life is 10.0 ± 3.67 ×1018 years, which is consistent with

the accepted value from direct decay measurements. This, in conjunction with non-
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zero GT strength present at several other locations in 150Pm, suggests that the

SSD hypothesis needs to be carefully examined in this case. Reference [39] states

that “[unless] there is an unknown 1+ low-lying state of 150Pm, the experimental

measurement should confirm [that the higher-state dominance (HSD) hypothesis reg-

ulates the] 2νββ decay of 150Nd.” While this low-lying 1+ has been shown to exist

in this work and the SSD seems to adequately explain the 2νββ decay half life, the

contribution of these higher-lying GT states cannot be ruled out.

Giant resonances have been identified in regions of higher excitation energy in the

150Nd(3He,t) experiment, including the IAS, GTR, IVSGDR, and what may be the

tail of the IVSGMR. In the 150Sm(t,3He) experiment, the vast majority of the ∆L=0

strength seen is very likely due to the population of the IVSGMR rather than GT

excitations. Because the two types of excitations have similar angular distributions,

they are not experimentally separable under current experimental configurations.

The two experiments discussed in this work provide a new basis on which to

test calculations of theoretical nuclear matrix elements for both the 2νββ and the

0νββ decay of 150Nd. Those NMEs can then be used to design the next generation

of 0νββ decay direct counting experiments, such as SNO+ [141], DCBA [33], and

SuperNEMO [2], and any positive signals from those will again use the NMEs to

calculate the Majorana neutrino mass.

Collaborative efforts (see Section 2.3.4) to systematically measure GT transitions

in ββ decay nuclei are underway and have borne fruit. However, most of these crucial

measurements have already been taken, so the experimental frontier for constraining

the ββ decay matrix elements will likely shift toward more general ways to test and

improve QRPA (or Shell Model etc.) calculations. One possibility is to make a

series of CE measurements on chains of stable and unstable nuclei, which should help

constrain the isovector portion of the nucleon-nucleon interaction and constrain many

types of theory [142]. The advent of (p,n) CE experiments in inverse kinematics should
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broaden the scope of such experiments [143]. Another possibility is to investigate

nuclei in the immediate region of a ββ decay, such as the recent experiments in

the 76Ge region measuring the valence proton and neutron orbits of 76Ge and 76Se

[144, 145].

151



BIBLIOGRAPHY

[1] R.N. Mohapatra et al. Theory of neutrinos: A white paper. Rep. Prog. Phys.,
70:1757, 2007.

[2] http://www.cenbg.in2p3.fr/spip.php?rubrique236&lang=fr.

[3] http://dcba.kek.jp/.

[4] K. Zuber. Nd double beta decay search with SNO+. In Workshop on Calculation
of Double Beta Decay Matrix Elements (MEDEX’07), volume 942, page 101.
AIP Conf. Proc, 2007.

[5] E. Fermi. Versuch einer Theorie der β-Strahlen. I. Zeits. f. Physik, 88:161,
1934.

[6] F. Wilson. Fermi’s theory of beta decay. Amer. Journ. of Phys., 36(12):1150,
1968.

[7] M. Goeppert-Mayer. Double beta-disintegration. Phys. Rev., 48:512, 1935.

[8] W.H. Furry. On transition probabilities in double beta-disintegration. Phys.
Rev., 56:1184, 1939.

[9] J. Bernabeu, A. De Rujula and C. Jarlskog. Neutrinoless double electron cap-
ture as a tool to measure the electron neutrino mass. Nucl. Phys. B, 223(1):15,
1983.

[10] J. Suhonen. Neutrinoless double beta decay to excited collective 0+ states.
Phys. Lett. B, 477:99, 2000.

[11] A.S. Barabash, Ph. Hubert, A. Nachab, and V.I. Umatov. Investigation of ββ

decay in 150Nd and 148Nd to the excited states of daughter nuclei. Phys. Rev.
C, 79:045501, 2009.

[12] A.S. Barabash. Precise half-life values for two-neutrino double-β decay. Phys.
Rev. C, 81:035501, 2010.

152



[13] M. Doi, T. Kotani, and E. Takasugi. Neutrinoless double-beta decay with
Majoran emission. Phys. Rev. D, 37(9):2575, 1988.

[14] K. Zuber. Double beta decay. Contemp. Phys., 45(6):491, 2004.

[15] Y. Fukuda et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys.
Rev. Lett., 81(8):1562, 1998.

[16] Q.R. Ahmad et al. Direct Evidence for Neutrino Flavor Transformation from
Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev.
Lett., 89:011301, 2002.

[17] C. Aalseth et al. Neutrinoless double beta decay and direct searches for neutrino
mass. arXiv:hep-ph/0412300v1, 2004.

[18] S.R. Elliot and P. Vogel. Double beta decay. Ann. Rev. Nucl. Part. Sci.,
52:115, 2002.

[19] O. K. Manuel. Geochemical measurements of double-beta decay. J. Phys. G:
Nucl. Part. Phys., 17:S221, 1991.

[20] W.C. Haxton, G.A. Cowan, and M. Goldhaber. Radiochemical tests of double
beta decay. Phys. Rev. C, 28(1):467, 1983.

[21] T. E. Economou A. L. Turkevich and G. A. Cowan. Double Beta Decay of
238U. Phys. Rev. Lett., 67(23):3211, 1991.

[22] S. Yoshida et al. CANDLES project for double beta decay of 48Ca. Nucl. Phys.
B, 138:214, 2005.

[23] Yu.G. Zdesenko et al. . CARVEL experiment with 48CaWO4 crystal scintil-

lators for the double β decay studies of 48Ca. Astroparticle Physics, 23:249,
2005.

[24] M. Pedretti et al. CUORE experiment: the search for neutrinoless double beta
decay. Int. Jour. Mod. Phys. A, 23:3395, 2008.

[25] C.E. Aalseth et al. The proposed Majorana 76Ge double-beta decay experiment.
Nucl. Phys. B (Proc. Suppl.), 138, 2005.

[26] A. Bettini et al. GERDA. Germanium Detector Array. search for Neutrinoless

double beta decay of 76Ge. Nucl. Phys. B (Proc. Suppl.), 168:67, 2007.

[27] H.V. Klapdor-Kleingrothaus et al. Data acquisition and analysis of the 76Ge
double beta experiment in Gran Sasso 1990-2003. Nucl. Instrum. Meth. Phys.
Res. A, 522(3):371, 2004.

[28] M. Danilov et al. Detection of very small neutrino masses in double beta decay
using laser tagging. Phys. Lett. B, 480(1-2):12, 2000.

153



[29] M. Nomachi et al. MOON (Mo Observatory Of Neutrinos) for double beta
decay. Nucl. Phys. B. Proc. Supp., 138:221, 2005.

[30] J. Suhonen and O. Civitarese. Weak-interaction and nuclear-structure aspects
of nuclear double beta decay. Phys. Rep., 300:123, 1998.

[31] Carlos Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and
Astrophysics. Oxford University Press, New York, 2007.

[32] C. Jackson F. Deppisch and I. Nasteva. Probing the mechanism of neutrinoless
double beta decay with SuperNEMO. Prog. Nucl. Part. Phys., 2010. in press.

[33] N. Ishihara, T. Ohama, and Y. Yamada. A proposed detector DCBA for double
beta decay experiments. Nucl. Instrum. Meth. Phys. Res. A, 373(3):325, 1996.

[34] C. Kraus, S.J.M. Peeters. The rich neutrino program of the SNO+ experiment.
Prog. Nucl. Part. Phys., 2010. in press.

[35] J. Argyriades et al. Measurement of the Double Beta Decay Half-life of 150Nd
and Search for Neutrinoless Decay Modes with the NEMO-3 Detector. Phys.
Rev. C, 80:032501, 2009.

[36] A. De Silva et al. Double β decays of 100Mo and 150Nd. Phys. Rev. C,
56(5):2451, 1997.

[37] J. Abad et al. An estimation for the half-lives of nuclear double beta emitters.
Anales de Fisica, 80:9, 1984.

[38] J. Suhonen and O. Civitarese. Testing the single-state dominance hypothesis
in two-neutrino double-beta decay. Czech. Journ. Phys, 50:561, 2000.
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[85] I.J. Thompson and F.M. Nunes. Nuclear Reactions for Astrophysics: Principles,
Calculation and Applications of Low-Energy Reactions. Cambridge University
Press, Cambridge, 2009.

[86] B. A. Brown et al. NSCL report MSUCL-1289.

[87] William D.M. Rae. Nushellx. Knoll House, Garsington, Oxford
(http://knollhouse.org/default.aspx).

[88] B.A. Brown. Lecture notes on nuclear structure (unpublished), 2009.

[89] M. A. Hofstee et al. Localized l ~ω particle-hole strength in nuclei. Nucl. Phys.
A, 588:729, 1995.

[90] W. G. Love and M. A. Franey. Effective nucleon-nucleon interaction for scat-
tering at intermediate energies. Phys. Rev. C, 24:1073, 1981.

157



[91] M. A. Franey and W. G. Love. Nucleon-nucleon t-matrix interaction for scat-
tering at intermediate energies. Phys. Rev. C, 31:488, 1985.

[92] W. G. Love, K. Nakayama, and M. A. Franey. Isovector couplings for nucleon
charge-exchange reactions at intermediate energies. Phys. Rev. Lett., 59:1401,
1987.

[93] G.W Hitt. The 64Zn(t,3He) Charge-Exchange Reaction at 115 MeV Per Nu-

cleon and Application to 64Zn Stellar Electron-Capture. PhD thesis, Michigan
State University, 2008.

[94] T. Udagawa, A. Schulte, and F. Osterfeld. Antisymmetric distorted wave im-
pulse approximation calculations for composite particle scattering. Nucl. Phys.
A, 474:131, 1987.

[95] R. G. T. Zegers et al. Extraction of Weak Transition Strengths via the (3He,
t) Reaction at 420 MeV. Phys. Rev. Lett., 99:202501, 2007.

[96] J. Raynal. Notes on ECIS97 (unpublished), see
http://www.nea.fr/abs/html/nea-0850.html.

[97] I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Com-
put. Phys. Rep., 7:167, 1988. See also http://www.fresco.org.uk/.

[98] S.Y. van der Werf, S. Brandenburg, P. Grasdijk, W.A. Sterrenburg, M.N.

Harakeh, M.B. Greenfield, B.A. Brown and M. Fujiwara. The effective 3He-
nucleon force in a microscopic DWBA approach to the (3He,t) charge-exchange
reaction. Nucl. Phys. A, 496:305, 1989.

[99] T. N. Taddeucci et al. The (p, n) reaction as a probe of beta decay strength.
Nucl. Phys. A, 469:125, 1987.

[100] R. G. T. Zegers et al. The (t,3He) and (3He, t) reactions as probes of Gamow-
Teller strength. Phys. Rev. C, 74:024309, 2006.

[101] F. Osterfeld. Nuclear spin and isospin excitations. Rev. Mod. Phys., 64:491,
1992.

[102] Y. Fujita et al. Gamow-Teller Strengths in Proton-Rich Exotic Nuclei Deduced
in the Combined Analysis of Mirror Transitions. Phys. Rev. Lett., 95:212501,
2005.

[103] A. L. Cole et al. Measurement of the Gamow-Teller strength distribution

in 58Co via the 58Ni(t,3He) reaction at 115 MeV/nucleon. Phys. Rev. C,
74:034333, 2006.

[104] A. Brockstedt et al. The (3He,t) reaction at intermediate energies. Nucl. Phys.
A, 530:571, 1991.

158



[105] R.G.T. Zegers. Search for isovector giant monopole resonances. PhD thesis,
University of Groningen, 1999.

[106] A. Bohr and B.R. Mottelson. Nuclear Structure, volume II (Nuclear Deforma-
tions). W.A. Benjamin, New York, 1975.

[107] N. Auerbach and A. Klein. A microscopic theory of giant electric isovector
resonances. Nucl. Phys. A, 395:77, 1983.

[108] H. Fujita et al. Better-resolution measurement of vertical scattering angle in
a new ion-optical mode of spectrometer Grand Raiden. Nucl. Instrum. Meth.
Phys. Res. A, 469:55, 2001.

[109] H. Fujita et al. Realization of matching conditions for high-resolution spec-
trometers. Nucl. Instrum. Methods Phys. Res. A, 484:17, 2002.

[110] T. Wakasa et al. High resolution beam line for the Grand Raiden Spectrometer.
Nucl. Instrum. Meth. Phys. Res. A, 482:79, 2002.

[111] T. Wakasa et al. New Capabilities of the Grand Raiden Spectrometer. Nucl.
Phys. A, 721:1099c, 2003.

[112] M. Fujiwara et al. Magnetic spectrometer Grand Raiden. Nucl. Instrum. Meth.
Phys. Res. A, 422:484, 1999.

[113] Y. Shimbara. High resolution study of Gamow-Teller transitions by
37Cl(3He,t)37Ar reaction. PhD thesis, Osaka University, 2005.

[114] A. Matic. High precision (p,t) reactions to determine reaction rates of explosive
stellar processes. PhD thesis, University of Groningen, 2007.

[115] D. Bazin, M. Lewitowicz, O. Sorlin, and O. Tarasov. The program LISE: a
simulation of fragment separators. Nucl. Instrum. Meth. Phys. Res. A, 482:314,
2002. program LISE; http://dnr080.jinr.ru/lise; http://www.nscl.msu.edu/lise.

[116] M.A. Moinester. Multipole decomposition of Gamow-Teller strength. Can.
Journ. of Phys., 65:660, 1987.

[117] J. Barette et al. Transitional nuclei. I. Decay of 150Pm to levels of 150Sm.
Can. Journ. of Phys., 48:1161, 1969.

[118] J. Jänecke et al. Fragmentation of Gamow-Teller strength observed

in 117,120Sn(3He,t)117,120Sb charge-exchange reactions. Phys. Rev. C,
48(6):2828, 1993.

[119] K. Pham et al. Fragmentation and splitting of Gamow-Teller resonances in

Sn(3He,t)Sb charge-exchange reactions, A=112-124. Phys. Rev. C, 51(2):526,
1995.

159



[120] V.G. Guba, M.A. Nikolaev, and M.G. Urin. Gamow-Teller giant resonance
(GTR) Configurational Splitting. Phys. Lett. B, 218(3):283, 1989.

[121] F. James. Minuit function minimization and error analysis reference manual.
http://hep.fi.infn.it/minuit.pdf, March 1994. Version 94.1.

[122] V.Rodin et al. to be published.

[123] D. Fang et al. Running sums for 2νββ decay matrix elements within the quasi-
particle random-phase approximation with account for deformation. Phys. Rev.
C, 81:037303, 2010.

[124] V. Rodin. private communication.

[125] The K500⊗K1200, a coupled cyclotron facility at the NSCL, NSCL Report
MSUCL-939. 1988.

[126] G. W. Hitt et al. Development of a secondary triton beam from primary 16,18O

beams for (t,3He) experiments at intermediate energies. Nucl. Instrum. Methods
Phys. Res. A, 566:264, 2006.

[127] D. Bazin, J. A. Caggiano, B. M. Sherrill, J. Yurkon, and A. Zeller. The S800
spectrograph. Nucl. Instr. Meth. Phys. Res. B, 204:629, 2003.

[128] S. Noji. Exothermic charge-exchange reaction at the S800. In Fu-
ture Prospects for Spectroscopy and Direct Reactions, pages 8,9, 2008.
http://meetings.nscl.msu.edu/fp2008/presentations/noji.pdf.

[129] C.J. Guess et al. Spectroscopy of 13B via the 13C(t,3He) reaction at 115A
MeV. Phys. Rev. C, 80:024305, 2009.

[130] J. Yurkon, D. Bazin, W. Benenson, D. J. Morrissey, B. M. Sherrill, D. Swan, and
R. Swanson. Focal plane detector for the S800 high-resolution spectrometer.
Nucl. Instr. Meth. Phys. Res. A, 422:291, 1999.

[131] J.A Caggiano. Spectroscopy of exotic nuclei with the S800 Spectrograph. PhD
thesis, Michigan State University, 1999.

[132] M. Howard et al. Gamow-Teller strengths in 24Na using the 24Mg(t,3He)
reaction at 115 MeV/u. Phys. Rev. C, 78:047302, 2008.

[133] K. Makino and M. Berz. Cosy infinity version 8. Nucl. Instrum. Meth. Phys.
Res. A, 427:338, 1999.

[134] G.W. Hitt et al. Gamow-Teller transitions to 64Cu measured with the
64Zn(t,3He) reaction. Phys. Rev. C, 80:014313, 2009.

[135] N. Auerbach and A. Klein. Structure of isovector spin excitations in nuclei.
Phys. Rev. C, 30(3):1032, 1984.

160



[136] R.L. Helmer et al. Gamow-Teller strength from the 76Se(n,p)76As reaction:

Implications for double β decay of 76Ge. Phys. Rev. C, 55(6):2802, 1997.

[137] K.J. Raywood et al. Gamow-Teller and dipole strength in the 208Pb(n,p)
reaction. Nucl. Phys. A, 625:675, 1997.

[138] S. Rakers et al. Low-lying GT+ strength in 116In from a (d,2He) reaction exper-

iment and its implications for 116Cd double β decay. Phys. Rev. C, 71:054313,
2005.

[139] M. Sasano et al. Measurements of the 116Cd(p,n) and 116Sn(n,p) reactions at
300 MeV for studying Gamow-Teller transition strengths in the intermediate
nucleus of the 116Cd double-beta decay. In AIP Conf. Proc., volume 1180, page
102, 2009.

[140] B. Pritychenko. On Double-Beta Decay Half-Life Time Systematics.
arXiv:1004.3280v1 [nucl-th], 2010. Brookhaven National Laboratory Report
BNL-91299-2010.

[141] L.W. Chen. A phenomenological equation of state for isospin asymmetric nu-
clear matter. Science in China Ser. G: Phys., Mech., Astro., 52(10):1494, 2009.
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